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1 Abstract
In this paper we will consider a mathematical model that aims to better describe the transmission
of malaria. The transmission model is an interaction model between mosquitoes and humans that
describes the progress of the infectious disease malaria in the human population. It accounts for the
different stages of the disease, showing how the infection develops in both humans and mosquitoes,
together with treatment of both sick and partially immune humans. Partially immune humans, which
are termed as asymptomatic, have recovered from the worst stages of the infection, but can still pass
on the disease to other humans. I will present a mathematical model that consists of a system of
ordinary differential equations that describes the evolution of humans and mosquitoes in a range of
different stages of the disease.

A new part of the model that I have added, in what turns out to be a key part of the system,
is the consideration of asymptomatic humans that have been reinfected again with malaria. The
analysis of the new model will include finding out of the value of the basic reproduction number, R0,
also asymptotic analysis to find out the important timescale of events that leads to malaria moving
from a non-endemic state to a endemic state in a region following that specific region gaining a few
infected mosquito’s. Studying the model I will be able to provide a better timeframe in which possible
interventions, in the infected region, may produce better results. From this we will be able to show
a better method to control the disease and possibly eradicate the infection from the region.
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2 Introduction

2.1 The biology of malaria
One of the most fatal diseases in the world is seen to be malaria. Malaria has many symptoms
associated with it however the most common ones, such as a fever, have been observed since the
prehistoric ages [1], during the European Renaissance period was when the name malaria was derived,
it comes from the Medieval Italian word, mal aria which has the meaning ”bad air”, humans thought
that the awful vapours coming from stagnate water and swamps were the main cause of the symptoms
associated with malaria, such as chills which is a common symptom of the infection.

Looking at historical records of the disease we can see quickly that there are many occasions documented
where descriptions match the symptoms associated with malaria, these descriptions are in the historical
records of early civilisations. An ancient Chinese medical text, Huangdi Neijing documents the disease
as repeated and sudden outburst of fever that leads to an increase in size of the spleen, the document
also states that the disease has the potential to become an epidemic. One major treatment that has
been adopted by the World Health Organisation is Artemisinin combination treatment, this front
line drug used to treat malaria came from a Chinese plant, Qing-hao. The plant was first discovered
around 2300 years ago, back then it was used to treat severe fever episodes. One description of
the disease is seen in the ancient Hindus of India where in this text they assert that the disease is
caused by the bite of a certain insect. Homer, Empedocles and Hippocrates, who lived in ancient
Greek times, refer to the disease as having characteristics of acute fever and increased spleen size
seen and only seen in humans who live in or near marshy lands. One astonishing fact is that some
research accredit malaria as the cause of the fall of the roman empire, the evidence comes from an
archaeological dig that discovered a child that had malaria present in their bones and the child was
said to have died 1500 years, showing the disease can stay active long after death. Charles Laveran
found the cause of malaria, in the later part of the 19th century, when he found a malaria parasite
in human blood in Africa. Giovanni Grassi and Raimondo Filetti first coined the word plasmodium
to denote the malaria parasite. Ronald Ross in 1897 demonstrated that plasmodium parasite can be
transmitted to a female Anopheles mosquito from an infected human, by a bite. Subsequently, this
showed how malaria can quickly become endemic in a region, through mosquito human transmission.

This chapter aims to give an insight into biological and historical facts about malaria, also showing
some problems with the disease which forms the main part of study, this allows the reader to gain a
great depth of knowledge surrounding the infection. The infectious disease malaria normally presents
with the most common symptoms been chills, fever, sweating, and anaemia which happen in recurrent
episodes, the disease is mostly prevalent in tropical climatic regions which contain a higher density
of mosquito’s. Malaria is a parasitic infection of red blood cells caused by a protozoan of the genus
Plasmodium, which is transmitted from human to human by the bite of an infected female anopheles
mosquito [2], which requires a blood meal to mature its eggs. Plasmodium parasites normally come
in four types all of which can cause infection, these are: plasmodium falciparum, plasmodium vivax,
plasmodium ovale and plasmodium malariae. Falciparum malaria caused by plasmodium falciparum
is the often documented to be the most severe type of malaria [3]. During the parasites life cycle
it will under go a series of changes that will be documented in a future chapter. WHO have said
that roughly 300-600 million people suffer with malaria each year and around 1 million are killed
every year [4]. It is also said that climate change may increase this number this is because due to
the role of temperature and rainfall in the dynamics of the population of the mosquito vector. [5] [6].
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Due to malaria’s high mortality rate, it continues to inflict major socio-economic issues in developing
countries, which leads to slow economic growth, only increasing by up to 1.3 percent each year [7].

Most epidemiological research into malaria is conducted into the disease transmission, the mosquito
vector and how the parasite interacts with the human host. This research has lead to major steps
forward in disease elimination, intervention strategies and also total eradication of the disease.
Elimination of malaria has been achieved in most of Europe, North America, Australia, North Africa
and the Caribbean, and parts of South America, Asia and Southern Africa [8]. However in the Tropical
and sub-tropical climates of the world the disease still does remain endemic in certain regions. WHO
are leading the fight against this deadly infection one of the important programs implemented by them
was the initiation of the Roll-Back Malaria Program which looked at two key areas of prevention and
treatment. Eradicating the disease has been more difficult than first thought so the program has had
to focus more on disease control rather than disease eradication, this is due to the high mortality rate
of children and pregnant women, the most vulnerable group.

Looking to eradicate malaria is a ever more difficult problem as as there is strong evidence that the
parasites and mosquito’s are becoming resistant to chemicals that they were once vulnerable to [9].
Another challenge that exists is the use of quick fix drugs to treat malaria, without complete clearance
of parasites, we create a paradox of asymptomatic parasite carriage. The issue of asymptomatic
parasite carriage is crucial in the the transmission of malaria. Intermittent Preventive Treatment
(ITP) is instituted by the WHO with the aim of treating and clearing existing malaria parasites and
preventing new infections in children and pregnant women. Asymptomatic carriers are not regularly
treated so an increased knowledge on the asymptomatic carriage of malaria parasites is needed to
assess the cost-benefit ratio of Intermittent Preventive Treatment [10].

Research carried out on the prevalence of asymptomatic carriage of P. falciparum in sub-saharan
Africa, Ogutu et al. [11] maintains that a disproportionate ratio of P. falciparum infections are
asymptomatic. Asymptomatic carriage is as high as 39% in children under 10 years old has been
reported. From this we can conclude that ”if a significant reduction in the malaria parasite pool
present in asymptomatic carriers could be achieved this would lend itself to a reduction in the rate of
disease transmission across an endemic region”. It becomes imperative to understand asymptomatic
carriers role in disease transmission of malaria, for which mathematical modelling can play a key
role. In this paper, we present a mathematical modelling framework to explicate the dangers that
asymptomatic carriers present to the population when they are given a quick treatment rather than
a complete cure which leads to an incomplete clearance of malaria parasites in a endemic region.

2.1.1 Structure of this paper

This thesis is made up of 6 chapters. In chapter 1 we present the abstract to the work. In chapter 2,
we present an introduction to the work looking at biological issues that surround malaria. In chapter
3, we present a review of some infectious disease models including mathematical models in malaria
epidemiology to prepare the background to the transmission model. We present the derivation and
analysis of the new transmission model in chapter 4 and round up the chapter with a brief discussion
of the numerical simulations and asymptotic analysis. Chapter 5 is the conclusion to the paper with
limitations of the new model I created.
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2.2 Life cycle of a malaria parasite
In this section we present the life cycle of the plasmodium parasite, which is the parasite that will
cause the most severe form of malaria. Seeing the life cycle of this parasite will give us an insight into
the modelling that has been used in this paper. The malaria parasite has a complicated life cycle
involving a mosquito and a human, which can be identified in four phases these are the sporozoite
phase, merozoite or erythrocytic phase and gametocyte phase. The merozoite phase starts and ends
within the human host whereas the parasite in the first and third stages need both the mosquito and

Figure 1: A figure describing the life cycle of P. falciparum, the most deadly parasite causing the most severe
malaria [12]

human environments to be sucessful in infecting. The female anopheles mosquito requires blood meal
to nurture its eggs and during the process of blood feeding it injects the malaria parasite in form of
sporozoites they attach their salivry glands onto the hu,man host wherever the host was bitten by
the mosquito. These sporozoites are moved around the body via the circulatory system to the liver
before this they envade immune cells, in which they infect hepatic cells. Each of these sporozoites
penetrates a liver cell using the liver to asexually reproduce through a process often referred to as
exoerythrocytic schizogony which leads to the production of merozoites, which are then released
into the bloodstream. During the process of schizogony an infected hepatic cell passes through four
metamorphic stages namely young ring, old ring, young trophozoite and old trophozoite to become
a schizont. However, this process may vary depending on the plasmodium species. For instance, for
some malaria parasites such as Plasmodium vivax and Plasmodium ovale, the development of certain
trophozoites is arrested at earlier stages to form some temporarily dormant cells termed hypnozoites,
which may reactivate after some weeks, months, or years being responsible for relapses of the disease
[13]. Once these merozoites are released into the blood stream, each starts another round of asexual
replication using a red blood cell and after approximately 48 hours, except Plasmodium malariae
that maintains a 72 hour cycle, each surviving merozoite from any of the other three species produces
a second generation of merozoites. Immediately after the erythrocyte invasion, the Plasmodium
falciparum parasite has the appearance of a ‘ring’ and after about 12 hours it gradually adopts a more
solid appearance known as a ‘young trophozoite’, which continues to grow after 24 hours to become a
schizont or segmenta and after about 12 hours later ruptures to release daughter parasites that infect
other erythrocytes [14]. The production of second and subsequent generations of merozoites increases
the level of parasitemia creating the common sysmptoms associated with malaria, due to continuous
rupturing of infected erythrocytes. Plasmodium falciparum merozoites attack all red blood cells, not
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just the young or old cells, as do other types and a patient with this type of malaria can die within
hours of the first symptoms [15]. Prolonged fever destroys so manyred blood cells causing blockage
of the blood vessels in vital organs (especially the kidneys), which in some cases culminates in the
enlargement of the spleen [16]. When malaria infection is left untreated for a long time, it can lead
to many complications including severe anaemia. There may be brain damage, leading to coma and
convulsions. The kidneys and liver may also fail [17].

The period starts from an immature ring stage, through trophozoite stage to a mature schizont,
and eventually bursts to release merozoites. As an alternative to continuous merozoite replication
cycles, some of these merozoites divide into sexual forms of the parasite called gametocyte. These
gametocytes, made up of the male form (microgametocytes) and the female form (macrogametocytes)
are later picked up by a female anopheles mosquito during blood feeding. Fertilization occurs in the
stomach of the mosquito as a microgamete becomes agellated and penetrates a macrogamete to form
a zygote. The zygote developed into a mobile form oockinete and penetrates the midgut wall of the
mosquito for further development into an asexual form, oocyst. After rounds of multiple replication
the oocyst ruptures to release sporozoites, which migrate to the salivary gland of the mosquito waiting
to be injected into the skin of the human host.

2.3 Interruption strategies and immunity to malaria
The constant world fight against malaria has been lead by the WHO with support from local
governments and charities too. At the current time of writing no vaccination exists against the disease
so control and interruption strategies have been put in place to contain it. A Global Partnership
program called Roll Back Malaria (RBM) is one of the main control strategies that targeted at
reducing the disease where it is most prevalent. The main aims of the program are to reduce the
burden of the disease, in particular for the most vulnerable, namely children and pregnant women.
To aid the research done in this paper we shall review some of the important interruption strategies
that have taken place to fight the disease. The control measures include:

1. Prompt and effective management of the disease through testing, treating and tracking (T3)
of every malaria case using antimalarial drug combination (eg. Ateminisinin combination
treatments).

2. Using Insecticide-treated bed nets (ITN)

3. Intermitent preventive treatment (IPT) especially, for pregnant women during anti-natal and
infants irrespective of disease symptoms

4. Killing the larva of the mosquito and the destruction of breeding sites to reduce the population
number

5. Indoor residual spraying (IRS) is been used to kill any infectious mosquitos that may lay indoors

6. Introduction of genetically modified mosquitoes that would produce single sex young ones.
Although this has not been implemented but researches are ongoing in this area.

7. Administration of transmission blocking drugs like gametocydal drugs to reduce the transition
of merozoites to gametocytes.
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With all these measures the WHO have still not been able to establish the desired effect. The greatest
challenge that now presents itself is the raise of drug resistance making the infection harder to treat.
Similarly, the benefits of intermittent preventive treatment may not be certain since, when a patient
goes through repeated treatments the immunity of that patient isn’t certain these are the major
challenges of intermittent preventive treatment (IPT)[18]. Treatments are designed such that there
main aims are to reduce morbidity and mortality and make sure that in severe cases the most extreme
symptoms such as chronic anemia are not present in people. Another important design feature of
treatments is that they aim to significantly reduce the transmission of the infection.

The World Health Organisation aims at tackling malaria at the community level so as to reduce
the intensity of malaria transmission at the local level by protecting people against infected mosquito
bites by reducing the density of mosquitoes as well as their life span. The application of indoor and
outdoor residual spraying, clearing of home surroundings, good drainage systems, use of treated bed
nets, among others are geared towards achieving these objectives. For instance one of the greatest
challenges in the fight against malaria is drug resistance which has been on the increase. Single use
therapies have been identified as contributing immensely to drug resistance and the recommended
use of Ateminisinin combination treatments is a measure to curb this form of drug resistance. This
shows us that mono therapies don’t fully treat and clear the patient of all parasites meaning that
after a patient is treated they become asymptomatic for a while. From what I have documented so
far i am looking to create a mathematical model such that we can model the dynamics of malaria in
a endemic region focusing on the transmission and control of the infection. Looking ahead i will use
methods looking at the potential of eliminating malaria from these regions by using data that very
accurately describes malaria transmission.

3 History of modelling

3.1 Infectious disease models
Malaria is an infectious disease hence it would be logical to assume that some other models used
to model infections might be helpful. Every model must take into account how the infection is
transmitted and whether the disease is contagious or vector transmitted. This is one of the determining
factors to whether an infection would turn into an epidemic or whether the disease would just stay
prevalent in a region . A disease could be an epidemic, pandemic or endemic. Contagious diseases
sometimes turn out to be epidemic especially, when humans are passing the infection around to each
other normally this is caused by droplets of infected spit been passed around. Often, an epidemic can
be a pandemic in that it spreads and affects a very high proportion of the population across a large
region within a continent or between continents, in recent months we have seen the rise of COVID-19
which became a pandemic so quickly due to the availability to travel easily between countries. A
disease can be classified as endemic if it is just prevalent in a specific region. Most of the infectious
disease models reviewed focus on explicating the dynamics of the disease by investigating its incidence
and prevalence through some basic assumptions relating the affected population, the status and spread
of the disease, and the mode of recovery. These models are the well known compartmental models SI,
SIS, SIR, SEIR and SEIRS, S=Susceptible, I=Infectious, E=incubating, R=Recovered [19, 20, 21].
However, Hethcote [20], discusses two additional models, MSEIR and MSEIRS where M represents
child immunity transferred by a mother in form of antibodies through the placenta. Hence a newborn
may have temporary passive immunity to an infection and after the antibodies disappear from the
body the infant moves to the S class, this only occurs if the mother has experienced that infection
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previously. For example measles fits this model however an infant is only in the M category if the
mother has had the infection. The SI model describes a simple epidemic in which a susceptible
population is exposed to infection. The basic foundation of this model can be found in the following
assumptions.

1. It is a contagious disease that is spread only from human to human

2. The rate that susceptible people and infected people interact is proportional to the number of
susceptible people and the number of infected people with the rate of proportionality expressed
by a infection parameter

3. A human who is susceptible when they get infected they become infectious immediately and
will never recover

4. The epidemic is short lived and the number of people remains constant so there is no births or
deaths

The SI model constructed with a coupled system of ordinary differential equations (ODEs). The rate
of change of the susceptible population with respect to time would be decreasing and the infected
population would be increasing at a rate proportional to the infection parameter or precisely, the
infectious contact rate. The implication of this is that, if a susceptible population is exposed to an
infectious disease with some proportion of the population being infected then the disease would spread
exponentially infecting most of the population, the implication of this is that if control strategies are
not implicated soon enough an infection can quickly become a very large problem. The SI epidemic
model does not describe an epidemic realistically since an infected population will either die or recover
and where there is no immunity, then the recovered population become susceptible again. The SIS
model describes a disease scenario where infected people have the tendency of recovering from the
disease without gaining immunity. Thus, infected people become susceptible again immediately after
recovery. It might be appropriate for some sexually transmitted diseases like chlamydia because after
recovery, the host is once again susceptible to infection [19]. The SIR model describes an infectious
disease in which some infected people recover from the disease then they receive immunity from the
infection forever and will never become susceptible to that infection again for example chicken pox
infection. This model unlike the SI and SIS models may have some practical implications. The SIR
model is a great example of modelling a flu epidemic since once a person has had a particular strain
of flu, their immune system prevents them from being reinfected with that strain a second time. The
classical SIR model is of the form:

dS

dt
= −βSI,

dI

dt
= βSI − αI,

dR

dt
= αI.

where β is the infection parameter and α, the recovery rate assumed to be proportional to the number
of infected people. The system is nonlinear and cannot be solved explicitly, although implicit solutions
can be found We note that this form of the SIR model does not involve demography but inclusion
of some host demographic factors like birth and deaths may impact the model if the disease is to
persist over a long period of time. Although the SIR model does have limitations, it is the basis
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for more involved deterministic models in epidemiology. The SEIR model is an improvement on
the SIR in most disease cases where an incubation period is relevant. The assumption that once
you have recovered you can’t catch the disease again still exists in this model. However, once being
infected, the person passes through an incubation period E before showing disease symptoms. The
SEIRS models describe the dynamics of endemic diseases where individuals who contact the disease
progress through a period of incubation before showing disease symptoms and becoming infectious
and after recovery from the disease may gain partial immunity and later become susceptible after loss
of immunity. Most of the models used initially to model malaria took the form of the SIR model it
appears clearly that the SEIRS portrays the dynamics of malaria better as we know that an issue with
the disease is the asymptomatic carriers that exist after they have recovered. Malaria transmission is
a cyclic relationship between an infectious human population and a susceptible mosquito population
also it can be seen as an infectious mosquito population and a susceptible human population. Various
mathematical models have been constructed to help understand the dynamics of malaria.

3.2 A review of models in malaria epidemiology

3.2.1 Transmission models

The first to construct a mathematical model of malria was Sir Ronald Ross [22]. He used two
equations, one representing the rate of change of infected humans with respect to time and the other
that of infected mosquitoes. One important outcome of the analysis of his model is that of threshold
density of the Anopheles mosquito, which he said that we did not have to eradicate the mosquitos
simply just bring the number below a certain threshold. Based on this, Kermack and McKendrick
published a classic paper in 1927 that discovered a a condition where they could predict the size of
an epidemic [61]. In 1957, MacDonald made further extensions on the work on the malaria model
of Ross [24]. In a systematic historical review of mathematical models in epidemiology, Smith et al.
[25] lead to over 70 scientists contributing to the Ross-Macdonald model. This model lead to major
devlopments and in 1982 Aron and May wrote the first transmission model.

dx

dt
= mabz(1− x)− rx, (3.1)

dz

dt
= ax(1− z)− gz. (3.2)

where x and z are fractions of infectious humans and adult female mosquitoes respectively. The
parameter a represents the number of bites a single female mosquito gives to humans and b is the
probability that a bite infects the human. The average number of female mosquitoes is represented
by m. The mortality rates of humans and adult female mosquitoes are rx and gz respectively. This
model has been extensively discussed in Chitnis [64]. Its assumptions are based on a simplified
process-based description of the pathogen life cycle [25], as represented by the biology in section 2.2.
The life cycle is simplified to these 4 events.

1. The patheogen is transmitted to the human during mosquito blood feeding

2. The pathogen infects then human then begins to multiply to a high density

3. A susceptible mosquito then lands on the infected human and begins blood feeding hence
becoming infected.

4. The pathogen develops in the mosquito moves to the salivary gland ready to infect a human
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Further work done on the Ross-Macdonald model by Bailey in 1982, led to the general theory that
describes malaria transmission in form of the classical SIR-SI model and since then considerable
modifications have been made in the quest for a model that will better describe the mosquito-human
interaction process and pathogen transmission.

A more sophisticated model that incorporates acquired immunity in malaria was constructed by
Dietz et al. [27], which gave a more realistic description of malaria epidemiology in the Garki area
in Nigeria, given entomological input and provided conditional inputs and comparative forecasts
for several specific intervention. Many malaria models involving immunity have been reviewed in
[28, 76, 30]. The models proposed by Anderson and May [66] and Aron and May [32] use the
assumption that acquired immunity does not depend on duration of exposure. While the models of
Aron [33, 34] and Bailey [35] are based on the assumption that immunity is boosted by additional
infections. A more comprehensive mathematical model typical of a characteristic endemic malaria is
the one proposed by Ngwa and Shu [52]. A malaria model with periodic mosquito birth and death
rates was proposed in [37]. The paper considers a novel situation where the birth and death rates
of mosquitoes and human death rate are periodic. Although the model does not include incubating
classes of both human and mosquitoes but they established a basic reproduction number such that
the disease will only prevail if this number was greater than unity, otherwise the disease will die out.
Another model involving the effects of seasonality and immigration’s of infected humans was proposed
in [53]. The results show that the strength of seasonality increases the number of infections and it is
not possible to achieve a disease free equilibrium in the presence of infected immigrants, signifying
that the disease cannot be completely eradicated if there is constant intake of infected immigrants.
Most prominent in the models discussed so far is the concept of the basic reproduction number. The
basic reproduction number of an infectious disease is a very important concept in epidemiology. This
important quantity provides the key to transmission dynamics, indicating the ease by which major
epidemics may be eradicated but also showing how quickly an infection may spread throughout a
population [?]. The symbol R0 is often used to represent it. If a single infectious case is introduced in
a population of susceptibles and assuming the population evolves in a continuum sense, it is expected
to generate a chain of subsequent infections for the disease to fully register itself (endemic) or die out
eventually. The expected number of cases that would arise from the introduction of a single primary
case into a fully susceptible population is referred to as the basic reproduction number of the disease.
R0 is a threshold parameter which determines whether or not an infectious disease will be endemic,
such that

• If R0 < 1 then the infection is growing at a slower rate than it can infect other susceptibles
hence the infection will eventually die out

• If R0 > 1 successive infection generations are larger than their predecessors, and the number
of cases in the population will initially increase, not necessarily indefinitely, but the disease
remains endemic.

Using analytic methods we want to produce a model such that we can prove the existence and
stability of a disease-free equilibrium point, defining the basic reproduction number and describing
the existence and stability of the endemic equilibrium points.
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3.2.2 Summary from the review

None of the models discussed above considers the assumption that immune humans being bitten
by infectious mosquitoes may be constantly incubating and there is the possibility of some immune
humans falling sick immediately after loss of immunity. We incorporate into our model some of the
features found in the SEIRS model of Ngwa and Shu [52]. In the next chapter we will present and
analyse the proposed model of malaria transmission.
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4 The new Transmission model
Here we will derive a new model of malaria transmission. This model extends that of Ngwa and
Shu [52] to take into account the various phases of the disease in humans and mosquitoes. The
asymptomatic humans have recovered from the worst of the symptoms, but can still transmit the
disease. A new feature added is the consideration of re-infected asymptomatic humans leading to
an additional incubating class. We first derive the model, then we undertake stability analysis to
establish the value of R0 and finally employ a time scale analysis to gain insight into how an epidemic
evolves from a small outbreak from a disease free population. The modelling is relevant for a 0.5
year timescale in which the population is not expected to change too much in the absence of malaria.
The model will also take into account the routine treatment of individuals who present with malaria
symptoms. In addition, we consider a putative treatment for post symptomatic humans, to limit the
capacity for asymptomatic human carriers of the disease.

4.1 Derivation of the model
A population of humans in a region is susceptible to malaria infection if the environmental conditions
in that region favour the breeding of the anopheles mosquitos. We recall from Section 2.2, that
once an infectious female anopheles mosquito injects parasites into the human at the bite site, these
parasites undergo some developmental stages within the host. These stages partition the host into a
incubation state,disease state or a non-disease state in the presence of parasites. In order to set the
necessary framework for the proposed model, we divide the human population into compartments
of susceptible, incubating, incubating asymptomatic, symptomatic and asymptomatic carriers, and
that of mosquitoes into susceptible, incubating and infectious compartments. State variables in the
model are given in Table 1 and the movement between compartments is summarised in Figure 3, the
individual pathways to be discussed below.

Sate Variable Description
N Total human population
C Susceptible human population
I Incubating human population
IA Number of incubating asymptomatic infectious humans
S Number of symptomatic infectious humans
A Number of asymptomatic infectious humans
M Total mosquito (female anopheles) population
X Number of susceptible mosquitoes
Y Number of incubating (incubating) mosquitoes
Z Number of infectious mosquitoes

Table 1: Table to show the state variables in my model
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The total population of humans and (female) mosquitoes are simply the sum of their respective
state variables, i.e.

N = C + I + IA + S + A,

M = X + Y + Z.

Figure 2: Schematic representation of mosquito human interaction model. The rectangles indicates the state
variables, the ovals are actions within humans and mosquitoes and the triangles indicates action between
species.

We use C to represent the set of susceptible humans who initially do not have malaria parasites but
have natural nonspecific immunity, whilst I represents the collection of humans who have received
infectious bites and are within the liver and early erythrocyte stage infection(humans will remain in
this state, untreated, for about 7-30 days). The S class involves those in the erythrocyte stage that
have developed both disease symptoms and gametocytes. Unlike those in the I class, symptomatic
infectious humans require treatment as those in the I class do not know they are infected.
Individuals reach a asymptomatic status A when they no longer have symptoms of the disease that
would warrant clinical attention but are still infectious to mosquitoes, which may be caused by
improper treatment or reinfection (individuals in this class can remain so for a mean time of around
165 days, provided they are not infected again). We use IA for individuals in the A class being
bitten by infectious mosquitoes. Since they carry both gametocytes and asexual parasites, loss of
immunity may cause their immediate transition into the S class instead of the C class. A mosquito
is said to be in the Y class as soon as it ingests gametocytes from an infectious human until the
time (about 12 days) before sporozoites migrate to the salivary gland when the mosquito becomes
infectious and proceed to the Z class. The IA, S and A classes are infectious to X, while the Z class
infects C and A.

One of the main benefits of disease modelling is its use to be able to control the disease and even in
some circumstances plan for disease eradication. The practical use of such models must rely heavily
on the realism put into the model. As usual, this does not mean inclusion of all variables in a
environment, but rather the incorporation in the model mechanisms, in as simple a way as possible,
that appear to be the major components [39]. The model explains the dynamics of both human
and mosquito populations as they progress from susceptible noninfectious states to infectious states.
Malaria is transmitted when a susceptible human is bitten by an infected Anopheline mosquito. The
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rate at which a susceptible person becomes infected is a function of contact rate with the infected
mosquitoes and level of host susceptibility [40]. We assume that mosquito biting vectors are equally
susceptible and a humans infectiousness to mosquitoes is determined solely by the gametocyte density
level inside the host [41].

Susceptible humans get infected at rate αheZ C
N

where eZ is the rate at which infected mosquitoes bite
(constant e being the biting rate per human per unit time), C

N
is the probability that the human bitten

is susceptible and αh is the number of human infections per bite. Likewise the rate of reinfection
of an asymptomatic individual is αheZ A

N
. The rate at which uninfected mosquitoes obtain the

plasmodium parasite from human carriers is e(αsS + αaA + αaIA)X
N

, noting that humans in class I
are in the incubating stage of infection and are not infectious to mosquitoes.

Susceptible mosquitoes are recruited into the mosquito population through a constant birth rate
λm. Assuming that each mosquito has the same biting behaviour, there will be a total of eM bites
by mosquitoes on humans. But only C

N
of these bites will be made on susceptible humans. The

probability that a bite is made by an infectious mosquito is Z
M

. It is important to note here that
the parameter αh assumes that not all bites by an infectious mosquito on a susceptible human can
lead to infection. The parameter αh ∈ [0, 1] is the proportion of bites by an infectious mosquito that
passes on the infection, where αh = 1 means all bites transmits the disease. However, αh = 0.086 in
the data, so this means there is only a 10% chance of an infected mosquito passing on its infection.
The cross infection rate is αhe ZN between the human and mosquito populations depends on the
average number of mosquito bites per unit time and the transmission probability normalised by the
human population [68, 43]. We also assume that the recruitment of humans into the susceptible
population occurs at a constant per capita birth rate λh and apart from asymptomatic individuals
no human in the incubating and symptomatic infectious classes would be affected by a bite from an
infectious mosquito. This assumption becomes necessary since we are primarily concerned about
how infectious bites from mosquitoes can lead to the disease. Those in the I class are already in the
process of transition into the S class who are entitled to treatment. Incubating humans become
infectious after a mean latency time 1

σh
. All human classes die ”naturally” at per capita rate µh

while some individuals in the S class die at an additional rate βhS from the disease. The survivors
receive treatment and either recover with complete clearance of parasites to join the susceptible
class at a rate rsS (individuals undergo a 14-day treatment), or only recover from symptoms (after a
3-day monotherapy) without parasite clearance to join the A class at a rate raS. The asymptomatic
class, A still carry merozoites and produce gametocytes, so can infect biting mosquitoes. A human
can be in this state for several weeks or months and hence play an important part in sustaining an
epidemic, noting that symptomatic individuals are in this state for 3-14 days [44, 45, 74]. It seems
that if there exists some treatment to target post infected humans, then the pool of people who
infect mosquitoes will be reduced. We then consider in our model a assumed treatment which
removes individuals from the A and IA class down to C and I respectively. The effect of the
treatment parameter, φθh (φ are being treated) in R0 will be an important part of the analysis.
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Susceptible mosquitoes get infected through infectious contacts with infectious humans at a rate
e(αsS + αaA + αaIa)XN and then move to the incubating compartment. Although there are some
conflicting findings on whether or not the plasmodium parasite reduces the life span of infectious
mosquitoes, direct laboratory results of [47, 48, 49, 50] suggest that the malaria parasite reduces
mosquito survival. Since mosquitoes do not recover from infection it follows that the infectiousness
of mosquitoes end in their death [68, 52]. We assume that mosquitoes in the incubating class die
naturally at a rate µmY and the rest get infectious at a rate σmY to join the infectious compartment
which they remain until their death either naturally, or through the carriage of infectious parasites
in their body [53] at a rate βmZ. Using the above assumptions, then the system of equations for the
human classes are

dC

dt
= λhN + rsS + iaA− αhe

Z

N
C − µhC + φθhA, (4.1)

dI

dt
= αhe

Z

N
C − σhI − µhI + φθhIA, (4.2)

dS

dt
= σhI + σhIA − βhS − rsS − raS − µhS, (4.3)

dA

dt
= raS − αhe

Z

N
A− iaA− µhA− φθhA, (4.4)

dIA
dt

= αhe
Z

N
A− σhIA − µhIA − φθhIA. (4.5)

The mosquito class equations are

dX

dt
= λmM − αse

S

N
X − αae

A

N
X − αae

IA
N
X − µmX, (4.6)

dY

dt
= αse

S

N
X + αae

A

N
X + αae

IA
N
X − σmY − µmY, (4.7)

dZ

dt
= σmY − βmZ − µmZ. (4.8)

The total population equations are

dN

dt
= λnN − βhS − µhN, (4.9)

dM

dt
= λmM − βmZ − µmM. (4.10)

where (4.9) is derived from adding (4.1) through to (4.5) and (4.10) is the sum of (4.6) through to
(4.8). To close this system we need a set of initial conditions for each of the state variables. A suitable
set depends on the context of the study. In section 4.7 we will consider the evolution of the disease
in a disease free human population with a small number of infected mosquitoes. Nevertheless, we
impose

t = 0, N = N0, M = M0.

as initial population values for humans and mosquitoes.
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4.2 Values of the parameters
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4.3 Non-dimensionalisation of the model
Since the variables N and M are the sum of the relevant compartment values, it is convenient to
re-express the compartment values as population fractions using

Ĉ = C

N
, Î = I

N
, ÎA = IA

N
, Ŝ = S

N
, Â = A

N
, X̂ = X

M
, Ŷ = Y

M
, Ẑ = Z

M

So that

Ĉ + Î + ÎA + Ŝ + Â = 1 (4.11)
X̂ + Ŷ + Ẑ = 1. (4.12)

The time derivatives for the variables will become, using variable C as an example

dNĈ

dt
= N

dĈ

dt
+ Ĉ

dN

dt
= N

dĈ

dt
+ (λh − βhŜ − µh)NĈ.

There are a number of time scales in the system, mosquito life cycle (weeks), incubation and symptom
(weeks), population turnover (tens of years), asymptomatic clearance ≈ 6 months), and the most
suitable choice for the scaling depends on the context. We are focusing on an endemic area and year
time scale, in which the total population change is negligible in the absence of the disease, hence we
scale time with the asymptomatic susceptible transmission parameter ia, and write

t = t̂

îa

so that t̂ = 1 is about 165 days. Recalling that M0 and N0 are the initial populations of humans and
mosquitoes respectively, we write

N = N0N̂ ,M = M0M̂

and define the following dimensionless parameters:

α = αheM0

iaN0
, b = αse

ia
, d = αae

ia
, σ = σh

ia
, µ = µh

ia
, λ = λh

ia
, β = βh

ia
,

γ = rs
ia
, ρ = ra

ia
, θ = φθh

ia
, f = σm

ia
, q = λm

ia
, g = µm

ia
, h = βm

ia

and by substituting these new parameters into (4.1) to (4.10) and dropping the hats for clarity we
get for the new human classes are

dC

dt
= λ+ γS + A− βZCM

N
− λC + βCS + θA, (4.13)

dI

dt
= αZC

M

N
− σI − λI + βIS + θIA, (4.14)

dIA
dt

= αZA
M

N
− σIa − λIA + βIAS − θIA, (4.15)

dS

dt
= σI + σIa − (β + γ + ρ+ λ)S + βS2, (4.16)

dA

dt
= ρS − A− αZAM

N
− λA+ βAS − θA. (4.17)
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The new mosquito class equations are

dX

dt
= q(1−X)− bSX − dAX − dIaX + hXZ, (4.18)

dY

dt
= bSX + dAX + dIAX − (f + q)Y + hY Z, (4.19)

dZ

dt
= fY − (h+ q)Z + hZ2. (4.20)

The new total population equations are

dN

dt
= −βSN + (λ− µ)N, (4.21)

dM

dt
= −hZM + (q − g)M. (4.22)

In solving the problem we can use (4.11) and (4.12) to reduce the number of ODEs. We solve the
system together with (4.11) and (4.12).

Dimensional form Non-dimensional parameter Value Value in terms of ε
αheM0
iaN0

α 62.43 O(1/ε2)
σh

ia
σ 11.1 1/ε

µh

ia
µ 0.0056 O(ε2)

βh

ia
β 0.01 O(ε2)

λh

ia
λ 0.017 O(ε2)

rs

ia
γ 11.5 O(1/ε)

ra

ia
ρ 54.45 O(1/ε2)

αse
ia

b 7.2 O(1/ε)
αae
ia

d 38.2 O(1/ε)
σm

ia
f 14 O(1/ε)

λm

ia
q 21.45 O(1/ε)

µm

ia
g 20.62 O(1/ε)

βm

ia
h 1.45 O(1)

φθh

ia
θ

Table 2: List of dimensionless parameters and their definitions in terms of the original parameters,
the dimensional values. In the final column we express the size of the parameter in terms of the small
parameter ε = σ−1 ≈ 0.09, this being relevant for section 4.7.

The dimensionless parameter values are shown in Table 2 and the parameters in relation to the
small parameter ε = σ−1 are also included. We note from the rescalings that the population of
humans, N0, and mosquitoes, M0, need not be presented but only M0

N0
. We do not have data for

malaria vectors/human populations, but we assume that the initial female mosquito population M0
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is ten times that of humans N0 due to the claim that in an endemic area of dengue fever the ratio of
female Aedes aegypti (the main vector of the virus) population to human population is 10 : 1 [54].
Though the main vector in our case is the female Anopheles mosquito, we expect that in an endemic
malaria region, the distribution of female An. gambiae mosquito will be well compared with that of
Aedes aegypti. But the rescalings are such that M0

N0
only affects the parameter α. By definition, ε is

the ratio of σh and ia (i.e. the proportion of time for the incubation period compared to the mean
asymptomatic state timescale) and ε << 1, means that asymptomatic humans remain infectious for
a longer time compared to the incubation period of humans. Analysing the model using ε as a small
parameter provides a convenient basis for the application of asymptotic methods in understanding
the effect of partial immunity on the spread of malaria.

4.4 R0 of the new transition model
The application of approaches like the traditional or intuitive method used in [52] or the next
generation matrix method used in [28, 64] may be used in the determination of the basic reproduction
number, R0. Here we use the next generation operator approach, which approximates the number of
secondary infections due to one infected individual and express R0 in the traditional form as suggested
by van den Driessche and Watmough [55]. As usual we consider a small perturbation of the disease
free state (C = 1;X = 1; I = IA = S = A = X = Y = Z = 0) and assume that growth and decay is
much faster than population change, i.e. M = N = 1, we consider the linearised system expressed in
the form

R′ = FR− V R (4.23)

where, R′ = dR
dt

and

F =



0 0 0 0 0 α
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 d b d 0 0
0 0 0 0 0 0


V =



a1 −θ 0 0 0 0
0 a0 0 0 0 0
−σ −σ a2 0 0 0
0 0 −ρ a3 0 0
0 0 0 0 a4 0
0 0 0 0 −f a5


R =



I
IA
S
A
Y
Z


here, FR represents the emergence of new infections, V R the transition of these infections between
compartments and R the reservoir of infection”. The constants ai are are expressed in terms of the
model parameters as follows:

a0 = σ + λ+ θ, a1 = σ + λ, a2 = α + γ + ρ+ λ (4.24)

a3 = 1 + λ+ θ, a4 = f + q, a5 = h+ q

This method assumes that there is a non-negative matrix G = FV −1 that guarantees a unique,
positive and real eigenvalue strictly greater than all others. Computing the inverse of V yields

G = 1
b0



0 0 0 0 αb11 αb12
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
f1 f2 f3 f4 0 0
0 0 0 0 0 0


(4.25)
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where,
b0 = a0a1a2a3a4a5, b11 = fa0a1a2a3, b12 = a0a1a2a3a4, f1 = bb2 + db3, f2 = db4 + bb5 + db6

f3 = bb7 + db8, f4 = db9, b2 = σa0a3a4a5, b3 = σρa0a4a5, b4 = a1a2a3a4a5, b5 = σa1a2a3a4a5.

b6 = σρa1a4a5, b7 = a0a1a3a4a5, b8 = ρa0a1a4a5, b9 = a0a1a2a4a5

The characteristic equation of (4.25) in terms of the eigenvalue, η, shows that four of the eigenvalues
vanish leaving the expression

η2 = α(bb2 + db3)b11

b2
0

(4.26)

which expressed in terms of the model parameters gives

η2 = ασf(b(1 + λ+ θ) + ρd)
(σ + λ)(β + γ + ρ+ λ)(1 + λ+ θ)(f + q)(h+ q) (4.27)

Although the next generation matrix demands that R0 = η is the basic reproduction number, in
practice η2 is often taken as R0 (indeed this was the assumption used in the original work applying this
method). We note from the numerator of (4.27) that the basic reproduction number is proportional
to the square of mosquito biting rate (e2) as expected.

4.5 Model analysis and the steady state solution
Consider the domain

Γ ∈ R10 = {C, I, IA, S, A,X, Y, Z,N,M (4.28)
: C, I, IA, S, A,X, Y, Z,M ≥ 0, N > 0,

C + I + IA + S + A = 1, X + Y + Z = 1}
and suppose t = 0 all variables are positive, the C(0) + I(0) + IA(0) + S(0) + A(0) = 1 and X(0) +
Y (0) + Z(0) = 1. if C = 0 and all other variables in Γ, then dC

dt
≥ 0. This is also the case for all

other variables in (4.11-4.22). If N = 0, then dN
dt

= 0 and M = 0 implies dM
dt

= 0. But if N > 0 and
M > 0, assuming λ > µ and q > g, then with appropriate initial conditions, dN

dt
> 0 and dM

dt
> 0.

Note the right hand side of (4.11-4.22) is continuous with continuous partial derivatives, so solutions
exist and are unique. The model is therefore mathematically and epidemiologically well posed with
solutions in Γ for all t ∈ [0,∞). The disease free state (C, I, IA, S, A,X, Y, Z) = (1, 0, 0, 0, 0, 1, 0, 0) is
locally and globally asymptotically stable when R0 < 1 and unstable for R0 > 1, where

R0 = ασf(b(1 + λ+ θ) + ρd)
(σ + λ)(β + γ + ρ+ λ)(1 + λ+ θ)(f + q)(h+ q) (4.29)

is the expected number of secondary infection cases that would arise from the introduction of a
single primary case into a fully susceptible population. We note that R0 = 1 is a bifurcation surface
in which the system changes its stability status, but we will only show proof of stability for the
disease free state. Since R0 >> 1 using previopus table and the infectiousness of asymptomatic
humans to mosquitoes is significantly large, a good target for treatment is to reduce the infectivity
of asymptomatic humans (reduce d) and that of symptomatic humans (reduce b) by increasing the
treatment parameters θ and γ An important task is to determine an amount of treatment that can
bring R0 to a safe level. For instance, for R0 to be brought down to unity, we will expect θ to be

θc = (σ + λ)(α + ρ+ λ)(f + q)(h+ q)(1 + λ)− ασf(b(1 + λ) + ρd)
ασfb− (σ + λ)(β + γ + ρ+ λ)(h+ q) (4.30)

in terms of parameters.
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4.6 Stability analysis of the transition model
Here we derive sufficient conditions for global stability of the disease free state from all initial
conditions ∈ Γ. The Jacobian matrix obtained by linearising system (4.13)-(4.20) about the disease
free equilibrium point, (C, I, IA, S, A,X, Y, Z) = (1, 0, 0, 0, 0, 1, 0, 0) is

Jdf =



−λ 0 0 a6 1 + θ 0 0 −α
0 −a1 θ 0 0 0 0 α
0 0 −a0 0 0 0 0 0
0 σ σ −a2 0 0 0 0
0 0 0 ρ −a3 0 0 0
0 0 −d −b −d −q 0 h
0 0 d b d 0 −a4 0
0 0 0 0 0 0 f a5


(4.31)

Where the ai are as defined above and a6 = β + γ. The characteristic polynomial with eigenvalues
(τ) is

(τ + λ)(τ + a0)(τ 5 +H1τ
4 +H2τ

3 +H3τ
2 +H4τ +H5) = 0 (4.32)

H1 = a1 + a2 + a3 + a4 + a5

H2 = a2a5 + a3a4 + a4a5 + a1a2 + a1a3 + a1a4 + a3a5 + a2a3 + a2a4 + a1a5

H3 = a1a2a3 + a1a2a4 + a2a3a4 + a2a3a5 + a2a4a5 + a3a4a5 + a1a4a5 + a1a2a5 + a1a3a4 + a1a3a5

H4 = a1a2a4a5 + a1a3a4a5 + a2a3a4a5 + a1a2a3a4 + a1a2a3a5 − ασfb

H5 = a1a2a3a4a5 − ασf(ba3 + ρd)

We note the linear factorisation of (4.31) clearly yields negative real eigenvalues, however, from the
quintic equation, no such deduction can immediately be made.

Lemma: The disease free equilibrium is asymptotically stable if R0 < 1 and is unstable if R0 > 1

Proof. From the definition of the a′is in (4.24), R0 is given by

R0 = ασf(ba3 + ρd)
a1a2a3a4a5

if R0 < 1 then
a1a2a3a4a5 > ασf(ba3 + ρd)

The the coefficients of the quintic polynomial of (3.6.2) are all positive and non zero; so by the
Descartes’ rule of signs there are no positive real eigenvalues, this means there are 1, 3 or 5 negative
real eigenvalues with the remaining being complex conjugate pairs. We need to show that Routh
Hurwitz stability conditions for a fifth order polynomial as stated in [79] and given in this case by

H1H2H3 > H2
3 +H2

1H4

(H1H4 −H5)(H1H2H3 −H2
3 −H2

1H4) > H5(H1H2 −H3)2 +H1H
2
5

are both satisfied. By letting D = H1H2H3 − H2
3 − H2

1H4 we express the above conditions as
F > 0 implies T > 0 where T = (H1H4 −H5)D −H5(H1H2 −H3)2 −H1H

2
5 Need to express T as
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a finite sum of positive terms involving the model parameters. We can show that D and T1 are sums
of positive terms and

T = T1 + [(a2
3F1 + a1F2 + F3 + F4 + F5 + F6)(Q1 + E2)]

+a2
1(F7 + F8) + a1F9 + F10)](Q1 − E2) + [a2

3E2 +Q2(b4 + E1)](b4 − E1)
The expressions for Q′is, F ′is, E ′is and b4 in A1 Since b4 > E1 and Q1 > E2 it follows that Q > 0. Thus
the disease disease-free equilibrium is locally and asymptotically stable if R0 < 1. The coefficients
H1, H2, H3 are positive and we observe that if R0 > 1,

a1a2a3a4a5 < ασfρd+ ασfba3

in which H5 is negative. Therefore the sequence of coefficients 1, H1, H2, H3, H4, H5 has only one sign
change irrespective of the sign of H4. By using Descartes’ rule of sign there must exist at least one
positive real eigenvalue, we conclude that the disease free state is unstable if R0 > 1

Lemma: The disease-free equilibrium is globally asymptotically stable in Γ if

Proof.
σα

σ + α
≤ (h+ q), fd

f + q
≤ γ + λ,

fd

f + q
≤ λ(σ + θ + λ)

σ + λ

Consider the function φ : [(C, IA, S, A,X, Y, Z) ∈ Γ : C,X > 0]→ R, where

φ = σ

σ + λ
(1− C) + λ

σ + λ
(IA + S + A) + f

f + q
(1−X) + q

f + q
Z (4.33)

We note that φ ≥ 0 and is continuously diferentiable on the interior of Γ We shall show that the
disease free equilibrium is a global minimum of φ on Γ if (4.35) holds. The derivative of φ computed
along solutions of the system is

dφ

dt
= ( σα

σ + λ
− q)Z + [ fb

f + q
− (γ + λ)]S + [ fd

f + q
− (1 + θ + λ)]A

+[ fd

f + q
− λ(σ + θ + λ)

σ + λ
]IA −

σα

σ + λ
(IA + S + A)ZS

−β(C + λ

σ + λ
IA)− 1

f + q
[fbS + fd(A+ IA + qhZ)]Y S

− 1
f + q

(fbS + fdA+ fdIA + qhX)Z (4.34)

We can see that dφ
dt
≤ 0 whenever

σα

σ + α
≤ (h+ q), fd

f + q
≤ γ + λ,

fd

f + q
≤ λ(σ + θ + λ)

σ + λ
(4.35)

In fact, for (IA, S, A, Y, Z) = (0, 0, 0, 0, 0), dφ
dt
≤ 0 and (IA, S, A, Y, Z) is the largest positively invariance

subset in the interior of Γ and by LaSalle’s invariant principle [56], (IA, S, A, Y, Z)→ (0, 0, 0, 0, 0) as
t→∞, while (C,X)→ (1, 1) on the boundary of Γ Some calculations given in Appendix A.2, using
the inequalities in (4.35) show that the basic reproduction number is less than unity. The disease
free state is globally stable if (4.35) are true, noting (4.35) R0 < 1.

24



Malaria Transmission H.S

4.7 Time scale analysis
In this section we present the time scale analysis of the model. Asymptotic analysis on the M and N
equations show that M changes on the time scale t = O(ε), while N changes on t = O( 1

ε2
). Thus we

assume M N to be constant over the time scale of our analysis. By letting θ = 0, we present the time
scale analysis of the dimensionless system

ε2
dC

dt
= ε4λ̂+ εγ̂S + ε2A− α̂ZC − ε4λ̂C + ε4β̂CS, (4.36)

ε2
dI

dt
= α̂ZC − εσ̂I − ε4λ̂I + ε4β̂IS, (4.37)

ε2
dIA
dt

= α̂ZA− εσ̂IA − ε4λ̂I4 + ε4β̂IAS (4.38)

ε2
dS

dt
= εσ̂I + εσ̂IA − (ρ̂+ εγ̂ + ε4β̂ + ε4λ̂)S + ε4β̂S2, (4.39)

ε2
dA

dt
= ρ̂S − (ε2 + ε4λ̂)A− α̂ZA+ ε4β̂AS, (4.40)

ε
dX

dt
= q̂(1−X)− b̂SX − d̂AX − d̂IAX + εĥY Z, (4.41)

ε
dY

dt
= b̂SX + d̂AX + d̂IAX − (f̂ + q̂)Y + εĥY Z (4.42)

ε
dZ

dt
= f̂Y − (εĥ+ q̂)Z + εĥZ2. (4.43)

subject to
C(0) = 1, I(0) = 0, IA(0) = 0, S(0) = 0, A(0) = 0

Y (0) = y0, X(0) = 1− y0, Z(0) = 0.
The definitions of the parameters with hats are given as

α = 1
ε2
α̂, σ = 1

ε
σ̂, µ = ε2µ̂, λ = ε2λ̂, γ = 1

ε
γ̂, ρ = 1

ε2
ρ̂. (4.44)

b = 1
ε
b̂, d = 1

ε
d̂, f = 1

ε
f̂ , g = 1

ε
ĝ, h = ĥ, q = 1

ε
q̂.

where we have assumed for simplicity all parameters to be equal (not proportional) to the powers of
ε as indicated in Table 2. We will carry out the analysis in the limit, ε → 0, y0 → 0 and y0 << ε.
We note R0 ∼ 1

ε
in this limit so endemic outbreak is guaranteed. The time scale analysis reveals the

endemic equilibrium for the human population as

C ∼ ε2
γ̂σ̂(q̂ + d̂)(q̂ + f̂)

ρ̂α̂f̂ d̂
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I ∼ ε
γ̂

ρ̂

IA ∼ 1

S ∼ ε
σ̂

ρ̂

A ∼ σ̂(q̂ + d̂)(q̂ + f̂)
α̂f̂ d̂

and for mosquitoes
X ∼ q̂

q̂ + d̂

Y ∼ d̂q̂

(q̂ + d̂)(q̂ + f̂)

Z ∼ f̂ d̂

(q̂ + d̂)(q̂ + f̂)
Details of the analysis are presented below in which there is evolution from an introduction of infected
mosquitoes (population fraction (y(0) = y0) to an uninfected area. The left-hand side of equations
(4.36)-(4.43) seem to provide an initial guess of two time scales (i.e t = O(ε2) and t = O(ε)) but
quite interestingly it happens to be a multi-scale problem. The method we use is that of formal
asymptotics, namely singular perturbation methods whose application to problems in mathematical
biology and classical mechanics is well established. The report does not include all the technical
details involved as we are only interested in the leading-order behaviour of the system. There are a
number of timescales but the six main timescales as predicted by the model are
t = O(ε2),≈ 1− 3 days: A small amount of infected mosquitoes introduced into the system become
infectious after passing through the incubation period. Susceptible humans bitten by these mosquitoes
get infected. The early infection registers itself in the human compartments. However the effect of
this early infection remains unnoticeable (O(εy0)) in the incubating asymptomatic class. The amount
of susceptible mosquitoes increases linearly due to natural birth.
t = O(ε 4

3 ),≈ 7−8 days: In this time scale susceptible mosquitoes get infected by biting asymptomatic
infectious humans. The amount of mosquitoes converting to the infectious class is also balanced by the
amount of mosquitoes becoming infected by biting people in the asymptomatic infectious class. This
behaviour is expected because individuals with clinical malaria have low level of gametocytes. Thus
the early infection of susceptible mosquitoes is likely to come through contact with asymptomatic
infectious humans since they have high gametocyte density. Infected humans are still negligible,
O(ε1/3y0).
t = O(ε 5

4 ),≈ 9 − 10 days: As more mosquitoes get infected through contact with asymptomatic
infectious humans, the amount of susceptible mosquitoes reaches its maximum and starts decreasing.
Whereas the feedback from infectious humans offsets the linear growth effect of the initial small
amount of infected mosquitoes introduced, eventually causing the amount of incubating mosquitoes
to grow exponentially. Human infected = O(ε− 1

2y0) :
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4.7.1 t = O(ε2)

Using a hat to denote variables in this time scale we write

t = ε2t̂,

and with appropriate balancing of terms in each of the equations exploring the idea that out of a
small amount y0 of infected mosquitoes introduced into the population only a smaller proportion εy0
becomes infectious, we seek leading order solution of the form

C ∼ 1 + εy0Ĉ1, I ∼ εy0Î0, IA ∼ ε3y2
0 ÎA0 , S ∼ ε2y0Ŝ0

A ∼ ε2y0Â0, X ∼ 1− y0 + εy0X̂1, Y ∼ y0 + εy0Ŷ1, Z ∼ εy0Ẑ0.

On substitution of these rescalings into (4.36)-(4.43), we obtain the leading order system

dĈ1

dt̂
= −α̂Ẑ0,

dÎ0

dt̂
= α̂Ẑ0,

dÎA0

dt̂
= α̂Â0Ẑ0 (4.45)

dŜ0

dt̂
= σ̂Î0 − ρ̂Ŝ0,

dÂ0

dt̂
= ρ̂Ŝ0,

dX̂1

dt̂
= q̂, (4.46)

dŶ1

dt̂
= −(f̂ + q̂), dẐ0

dt̂
= f̂ (4.47)

recalling y0 << ε << 1, satisfying the initial conditions

Ĉ1(0) = 0, Î0(0) = 0, ÎA0(0) = 0, Ŝ0(0) = 0,

Â0(0) = 0, Ŷ1(0) = 0, X̂1(0) = 0, Ẑ0(0) = 0.

By doing direct integration we get the following leading order solutions

Ĉ1 ∼ −
1
2 α̂f̂ t̂

2, Î0 ∼
1
2 α̂f̂ t̂

2, ÎA0 ∼
1
30 α̂

2σ̂f̂ 2t̂5, Ŝ0 ∼
α̂σ̂f̂

2ρ̂ t̂2,

Â0 ∼
1
6 α̂σ̂f̂ t̂

3, X̂1 ∼ q̂t̂, Ŷ1 ∼ −(f̂ + q̂)t̂, Ẑ0 ∼ f̂ t̂.

We observe that susceptible humans (C) and incubating mosquitoes (Y ) are decaying linearly in time
from their initial values due to incubating mosquitoes converting to the infectious class and susceptible
humans becoming infected as a consequence of infectious contact with mosquitoes in the Z class. With
Â0 = O(t3) there is a balance shift in (4.42), when Â0 = O(ε−2) i.e. at a timescale t = O(ε− 2

3 ), as
susceptible mosquitoes become infected by biting asymptomatic humans. It is interesting to note
that I and S equilibrate such that S

I
∼ εσ

ρ
in this time scale 6and remain so as we will see in all the

following timescales.
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4.7.2 t = O(ε 4
3 )

Denoting variables with over-bars in this time scale we write

t = ε4/3t̄

and obtain the variable rescalings

C ∼ 1 + ε−1/3y0C̄1, I ∼ ε−1/3y0Ī0, IA ∼ ε−1/3y2
0IA0 , S ∼ ε2/3y0S̄0,

A ∼ y0Ā0, X ∼ 1− y0 + ε1/3y0X̄1, Y ∼ y0 + ε1/3y0Ȳ1, Z ∼ ε1/3y0Z̄0.

On substitution of these rescalings into (4.36)-(4.43) and considering the leading order terms we found
that all the other equations remain the same as (4.45)-(4.47) in the previous time scale but the X
and the Y equations both have an additional term, d̂Ā0, given by

dX̄1

dt̄
= q̂ − d̂Ā0,

dȲ1

dt̄
= d̂Ā0 − (f̂ + q̂)

marking the advent of feedback of infection from asymptomatic individuals to susceptible mosquitoes
due to the initial small amount of infected mosquitoes introduced into the totally susceptible human
population. This creates a balancing effect between the amount of mosquitoes converting to the
infectious class and the amount becoming infected by biting people in the asymptomatic infectious
class. We use the initial conditions

C̄1(0) = 0, Ī0(0) = 0, ĪA0(0) = 0, S̄0(0) = 0,

Ā0(0) = 0, Ȳ1(0) = 0, X̄1(0) = 0, Z̄0(0) = 0.

to obtain following solutions

C̄1 ∼ −
1
2 α̂f̂ t̄

2, Ī0 ∼
1
2 α̂f̂ t̄

2, ĪA0 ∼
1
30 α̂

2σ̂f̂ 2t̄5, S̄0 ∼
α̂σ̂f̂

2ρ̂ t̄2,

Ā0 ∼
1
6 α̂σ̂f̂ t̄

3, X̄1 ∼ −
1
24 α̂σ̂f̂ d̂t̄

4, Ȳ1 ∼
1
24 α̂σ̂f̂ d̂t̄

4, Z̄0 ∼ f̂ t̄.

The only notable difference between these and the earlier time scale is in X and Y with an accelerated
rate of mosquito infection from asymptomatic infectious humans. The implication of this is that the
flow of the solution may change direction especially when the amount of mosquitoes getting infected
becomes more than the in ow of new born mosquitoes. This happens at the point of breakdown

t̄ = O(ε−1/12)

where Ȳ1 becomes O(y0). The dynamics of the system in the next time scale is a consequence of the
change in the order of Ȳ1.

4.7.3 t = O(ε 5
4 )

Using a tilde to denote variables in this time scale where,

t = ε5/4t̃
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the rescalings are

C ∼ 1 + ε−1/2y0C̃1, I ∼ ε−1/2y0Ĩ0, IA ∼ ε−3/4y2
0 ĨA0 , S ∼ ε1/2y0S̃0

A ∼ ε−1/4y0Ã0, X ∼ 1 + y0X̃1, Y ∼ y0Ỹ1, Z ∼ ε1/4y0Z̃0

On substitution of these into (4.36)-(4.43) we find (at leading order) that the equations representing
the human compartments are unchanged, but due to the dominant contribution of asymptomatic
infectious humans on the infection of mosquitoes, the rate of change of Ỹ1 and X̃1 are proportional
to the amount of asymptomatic humans with that of Z̃0 proportional to Ỹ1. The system in full is

dC̃1

dt̃
= −α̂Z̃0,

dĨ0

dt̃
= α̂Z̃0,

dĨA0

dt̃
= Ã0α̂Z̃0, σ̂Ĩ0 = ρ̂S̃0,

dÃ0

dt̃
= ρ̂S̃0,

dX̃1

dt̃
= −d̂Ã0,

dỸ1

dt̃
= d̂Ã0,

dZ̃0

dt̃
= f̂ Ỹ1.

Successive differentiation of dZ̃0
dt̃

we find that d4Z̃0
dt̃4

= KZ̃0 and matching the solution with section
(4.7.2) as t̃→∞ we have

C̃1(0) = Ĩ0(0) = ĨA0(0) = S̃0(0) = Ã0(0) = Z̃0 = 0, X̃1(0) = −1,

Ỹ1(0) = 1, dZ̃0

dt̃
(0) = f̂ ,

d2Z̃0

dt̃2
(0) = 0, d

3Z̃0

dt̃3
(0) = 0, Z̃0(0) = 0,

where K = α̂σ̂f̂ d̂. Large time solutions are

C̃1 ∼ −
α̂f̂

4K1/2 e
K1/4t̃

, Ĩ0 ∼
α̂f̂

4K1/2 e
K1/4t̃

, ĨA0 ∼
α̂f̂

32d̂K1/4
e2K1/4t̃

, S̃0 ∼
α̂σ̂f̂

4ρ̂K1/2 e
K1/4t̃

Ã0 ∼
α̂σ̂f̂

4K3/4 e
K1/4t̃

, X̃1 ∼ −
1
4e

K1/4t̃

, Ỹ1 ∼
1
4e

K1/4t̃

, Z̃0 ∼
f̂

4K1/4 e
K1/4t̃

shows that both the mosquito and human compartments are growing exponentially. For K0 =
K1/4 the approximations for this timescale become poor when C̃1 = O(eK0 t̃) = O(ε1/2/y0) i.e
t̃ = ln(ε1/2/y0/K0) when asymptomatic humans become infected with new asexual parasites due
to contact with infectious mosquitoes.

4.7.4 t = ε
5
4 ln(ε1

2/y0)/K0 +O(ε 5
4 )

In order to describe events captured on this time scale we translate in time from the former time
scale and write

t = ε
5
4 ln(ε 1

2/y0)/K0 + ε
5
4 ť

where the check is the symbol for variable representation. The initial small amount of infection has
been totally distributed and whose effect has developed into the beginnings of a full blown epidemic
with C and I becoming O(1) and no dependence on y0, to leading order as we can see in the following
rescalings

C ∼ Č0, I ∼ Ǐ0, IA ∼ ε1/4ǏA0, S ∼ εŠ0, A ∼ ε1/4Ǎ0,

X ∼ 1 + ε1/2X̌1, Y ∼ ε1/2Y̌1, Z ∼ ε3/4Ž0.
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Following the usual substitution procedure we find that at leading order, some equations remain the
same as in the preceding time scale whereas the C, L, A, X and Y equations are now being expressed
as

dČ0

dť
= −α̂Č0Ž0,

dǏ0

dť
= α̂Č0Ž0,

d ˇIA0

dť
= α̂Ǎ0Ž0. (4.48)

S0 = σ̂

ρ̂
Ǐ0,

dǍ0

dť
= ρ̂S0 − α̂Ǎ0Ž0,

dX̌1

dť
= −d̂Ǎ0 − d̂ǏA0, (4.49)

dY̌1

dť
= d̂Ǎ0 + d̂ǏA0,

dŽ0

dť
= f̂ Y̌1.

where by matching with the long time solution of section 4.7.3

ť→ −∞

Č0 → 1−, Ǐ0 → 0+, ǏA0 → 0+, Š0 → 0+, Ǎ0 → 0+, X̌1 → 0+, Y̌1 → 0+, Ž0 → 0+

the situation where asymptomatic humans become infected with new asexual parasites due to their
contact with infectious mosquitoes, which eventually reduces the size of A as asymptomatic humans
leave for the IA class. Consequently, more susceptible mosquitoes get infected as incubating asymptomatic
humans transfer infection. In order to obtain a solution of the system, we note

dČ0

dť
+ dǏ0

dť
= 0, d(ǏA0 + Ǎ0)

dť
= σ̂Ǐ0,

d3Ž0

dť3
= σ̂f̂

ˆ̌
I0.

First equation gives us, Č0 + Ǐ0 = 1. Substituting this into the differential equation for Č0, leads to
the fourth-order nonlinear ode, which is the main equation that drives the dynamics of the system
on this time scale given by

d4F̌

dť4
= −K(1− eF̌ )

Where K is defined above and F̌ = ln(Č0) This equation does not seem to have an analytical solution
but we can extract some key information by investigating its behaviour. It is easy to show that
F = 0(Č0 = 1) is an unstable steady state. Considering g(F ) = −K(1 − eF̌ ), F = 0 → g = 0, F <
0→ g < 0 and F > 0→ g > 0. Thus F = 0 is unstable. By matching we have F → 0−, or Č0 → 1−,
as ť→ −∞ hence dF̌

dť
< 0 as ť increases i.e. a non-negligible amount of humans are becoming infected.

For large, negative F̌ we have
d4F̌

dť4
∼ −K,

as the homogenous ODE whose general solution is,

F̌ = − 1
24Kť

4 + 1
6α1ť

3 + 1
2α2ť

2 + α3ť+ α4

as ť→ +∞ where α1, α2, α3, α4 are unresolved constants depending on the solution as ť→ −∞. The
solutions for the susceptible and incubating human compartments are

Č0 ∼ B0exp(
a1

6 ť
3 + a2

2 ť
2 + a3ť)e−

K
24 ť

4
, Ǐ0 ∼ 1−B0exp(

a1

6 ť
3 + a2

2 ť
2 + a3ť)e−

K
24 ť

4
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indicating a very rapid exchange from the C to the I class describe how the force of infection generated
by infectious mosquitoes, Z drastically reduces the size of C and increases that of I. As Č0 → 0 and
by applying dominant balancing of terms we obtain large time behaviour of other variables as

ǏA0 ∼ σ̂ť, Š0 ∼
σ̂

ρ̂
, Ǎ0 ∼

6σ̂
K
ť−3, X̌1 ∼ −

1
2 d̂σ̂ť

2, Y̌1 ∼
1
2 d̂σ̂ť

2, Ž0 ∼
K

6α̂ ť
3

as ť → ∞. Due to the rapid drop in the C class, there are series of minor transition timescales in
which C = O(1) falls to C = O(ε2), in several very small timescale stages. We shall omit the details
and move on to the next major rebalance of the system, at ť = O(ε−1/4), where the infected mosquito
classes become non-negligible and the incubating classes dominate the human population.

4.7.5 t = O(ε)

We will use the ∗ symbol to denote variables on this time scale. By expressing time as

t = εt∗

The variable rescalings are as follows:

C ∼ ε2C∗0 , I ∼ I∗0 , IA ∼ IA
∗
0, S ∼ εS∗0 , A ∼ εA∗0, X ∼ X∗0 , Y ∼ Y ∗0 , Z ∼ Z∗0 ,

noting the susceptible class is now O(ε2) and that most of human population are in the incubating
classes. On substitution of these into the full system as usual, yields a situation where some of the
variables have assumed quasi-steady states, i.e. they are expressed in terms of the other variables,
especially,

C∗0 = γ̂

ρ̂
A∗0, S

∗
0 = σ̂

ρ̂
(I∗0 + IA

∗
0), A∗0 = ρ̂S∗0

α̂Z∗0

The remaining variables are described by the system

dI∗0
dt∗

= −σI∗0 ,
dIA

∗
0

dt8
=∗0,

dX∗0
dt∗

= q̂ − (q̂ + d̂IA
∗
0)X∗0 ,

dY ∗0
dt∗

= d̂IA
∗
0 − (f̂ + q̂)Y ∗0 ,

dZ∗0
dt∗

= f̂Y ∗0 − q̂Z∗0 .

subject to
I∗0 (0) = 1, IA∗0(0) = 0, Y ∗0 (0) = 0, X∗0 (0) = 1, Z∗0(0) = 0.

The straightforward solutions are

I∗0 ∼ e−σt
∗
, IA

∗
0 ∼ 1− e−σt∗

and consequently, S∗0 = σ̂
ρ̂

We cannot solve for the other variables, but it is useful to note that the
leading behaviour as t∗ →∞, are the steady states

C∗0 ∼ ε2
γ̂σ̂(q̂ + d̂)(q̂ + f̂)

ρ̂α̂f̂ d̂
, A∗0 ∼ ε

σ̂(q̂ + d̂)(q̂ + f̂)
α̂f̂ d̂

,

X∗0 ∼
q̂

q̂ + d̂
, Y ∗0 ∼

d̂q̂

(q̂ + d̂)(q̂ + f̂)
, Z∗0 ∼

f̂ d̂

(q̂ + d̂)(q̂ + f̂)
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We note that while other variables are in their steady states, the amount of incubating humans
decays rapidly causing the amount of incubating asymptomatic humans to grow due to massive
inflow of asymptomatic humans being infected with asexual parasites. Although not apparent from
the solutions we can show that approximation to I will no longer be O(1) when

t∗ = 1
σ̂
ln(1/ε) +O(1)

which gives us our final time scale

4.7.6 t = (1/ε)/σ +O(ε)

Variables on this time scale will be denoted using ”′” so that;

t = (1/ε)/σ̂ + εt
′

and
C ∼ ε2C

′

0, I ∼ εI
′

0, IA ∼ 1, S ∼ εS
′

0, A ∼ εA
′

0, X ∼ X
′

0, Y ∼ Y
′

0 , Z ∼ Z
′

0

On substitution of these into (4.36-4.43) we find that the variables in their steady states remain
unchanged and IA ∼ 1. Only I ′ is evolving at leading order according to,

dI
′
0

dt′
= γ̂σ̂

ρ̂
− σ̂I ′0.

The graphs below show that the rapid drop of susceptible humans as shown in the fourth timescale of
the analysis follows immediately after a sharp increase in the number of infectious mosquitoes. The
fraction of Incubating humans, I increases as C drops. Above is the solution of the dimensionless
system (4.36-4.43) using ε = 0.001 and all other dimensionless parameters set to unity. The top
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graph represents the various compartments in the human population and the bottom graph shows
the fractions of mosquito population. Note the time axes are the log10 values for time and that
the human and mosquito fractions are also been logged. The vertical dotted lines indicate different
timescales, marking conspicuous event. We only present the 4th and the 5th time scale for the human
population where the 3rd class is omitted for the mosquito class.
The number of incubating asymptomatic humans had been of low order from the beginning of the
analysis and I had always dominated the infection classes. But immediately after the disease fully
established itself, we observe that in the fifth timescale, I is no longer O(1) as IA grows to overtake
I, which culminates in the final state of the disease showing about 90% of the human population
in the incubating asymptomatic class as predicted by the analysis. Different stages of events in the
mosquito population as predicted by the analysis are also well represented by the simulations. By
matching with the previous timescale we have I ′0 ∼ eσt

′
as t→ −∞ hence the solution

I
′

0 = γ̂

ρ̂
− eσ̂t

′

which decays to γ̂
ρ̂

as t→ −∞. Thus we reach the complete equilibrium state at leading order namely

C ∼ ε2
γ̂σ̂(q̂ + d̂)(q̂ + f̂)

ρ̂α̂f̂ d̂
, I ∼ ε

γ̂

ρ̂
, IA ∼ 1, S ∼ ε

σ̂

ρ̂
, A ∼ ε

σ̂(q̂ + d̂)(q̂ + f̂)
α̂f̂ d̂

,

X ∼ q̂

q̂ + d̂
, Y ∼ d̂q̂

(q̂ + d̂)(q̂ + f̂)
, Z ∼ f̂ d̂

(q̂ + d̂)(q̂ + f̂)

4.7.7 Conclusion from the analysis

Through our timescale analysis we have provided insight into the transmission of the disease as
shown by the numerical simulations. Six main time scales as predicted by the model are used with
appropriate rescalings to explicate the dynamics of the disease in relation to events as they evolve
from early incidence to endemic state. There are important concluding remarks about the spread of
the disease:
• Throughout the analysis, S has been proportional to I showing that the level of the disease

depends very much on non-immune individuals becoming infected. We also find that C remained
at O(1) from the first timescale until the fourth time scale

t = ε
5
4 ln(ε12/y0)/K0 +O(ε 5

4 )

when it suddenly dropped to O(ε2), which suggests that intervention programs may yield better
results if implemented before this time scale, preferably by the time t = O(ε5/4), during which
the feedback from infectious humans osets the linear growth effect of the initial small amount
of infected mosquitoes. This equates to about 2-3 weeks from the initial infection.

• The contribution of asymptomatic infectious humans has a significant effect on the dynamics
of the disease. This becomes evident in the time scale t = O(ε4/3) and influences the mode
of infection throughout the period of analysis. This is due to our choice of the values of the
model parameters, which we have assumed that asymptomatic humans are far more infectious
than symptomatic humans. We recall that disease symptoms are associated with the erythroctye
cycle, a period characterised by incursion and invasion of the red blood cells by asexual parasites.
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• The noticeable build-up of Incubating asymptomatic humans at steady state is a clear characteristic
of the dynamics of malaria in an endemic region. This portends a dangerous scenario and creates
adverse effect on public policies aimed at control or eradication of the disease. It appears adults
get partial immunity at the expense of children and women (who may likely loose immunity)
during pregnancy. The condition ε << 1, or precisely ia << σh, on which our analysis is
based, represents a situation where humans spend a very long time in the asymptomatic class
potentially, but they get infected almost immediately harbouring infection without remarkable
symptom of the disease and from known results, this is reinforced through continuous infection
as shown in our analysis.

• In order to use our model to achieve effective control or eradication of the disease we will
perform some more simulations in the future to ascertain if it is worth considering an option
of reducing the time humans spend in the asymptomatic class through treatment so that we
can recommend and promote the simple slogan, check your ‘Malaria Infection Status’ (MIS)
and get treated. Another option is to ascertain whether or not prompt treatment of sick people
would guarantee a disease free state by considering γ as a treatment parameter.

• The scenario in which the analysis is based has R0 > 1 so an endemic situation is guaranteed.
It is interesting to note that the dominant human class is the IA class who are both incubating
and infectious to mosquitoes. This class is absent in all other models to our knowledge, yet, this
model suggests, it is by far the most important class in sustaining the disease. Throughout this
analysis, S = O(ε) which means that the amount of death due to the disease is negligibly small,
and, together with a negligible natural birth and death rate, N ≈ 1 throughout this analysis.
The scalings for mosquitoes suggest that death by the disease is negligible compared to natural
death, and hence dM

dt
∼ (q̂ − ĝ)M/ε so that M will change in a t = O() timescale. In reality

there will be limitation to population growth.

4.8 Numerical Simulations
In section 4.6 we analysed the transition model by adducing good conditions to show that the disease
free state is locally and asymptotically stable if R0 < 1 and unstable for R0 > 1. We studied the
disease based on R0 > 1 using timescale analysis in section 4.7 to demonstrate the existence of an
endemic state. Here we will use numerical analysis to verify the results we have derived. We will also
demonstrate numerically that the endemic state is globally and asymptotically stable if R0 > 1 using
a set of initial conditions defined by Γ (4.28).
Due to the asymptotic analysis, we assume that M

N
is constant throughout the simulations. The

numerical solution is obtained using MATLAB’S ODE45, a variable order Runge-Kutta. The parameters
used are defined in Table 2 are α = 62.43, σ = 11.1 (i.e ε = 0.09), µ = 0.0056, λ = 0.017, β = 0.01, γ =
11.5, ρ = 54.45, θ = 0, b = 7.2, d = 38.2, f = 14, g = 21.12, h = 1.45, q = 21.45. The inital conditons
at t=0 are: C = 1, I = 0, IA = 0, S = 0, A = 0, X = 0.9999, Y = y0 = 0.0001, Z = 0, N = 1,M = 1.
This is a situation where the entire susceptible human population is exposed to a small fraction of
infected mosquitoes. The program was run in MATLAB with different sets of initial conditions. In
Figure 3 a,c, the proportion of susceptible human population drops. This is more pronounced in
Figure 3 a, in which we have used θ = 0 to represent non-treatment of asymptomatic humans leading
to more infection of susceptible humans.

The incubating human fraction peaks and later drops to a steady state. There is a high proportion
of incubating asymptomatic humans showing that the asymptomatic state is being preserved in
continuous infection. In Figure 3 b, more than half of the mosquito population are infected indicating
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Figure 3: Results showing the effect of the initial infected mosquito population on evolution of endemic
infection where t = 1, represents 165 days in real time. The initial conditions used are C = 1, I = 0, IA =
0, S = 0, A = 0, X = 0.9999, Y = 0.0001, Z = 0, N = 1,M = 1 and the parameter values are given in Table
2. In Figure 3 c,d, there is some level of post disease treatment (θ = 20), whilst we have used θ = 0 in Figure
3 a,b to explicate the dynamics of endemic malaria in which asymptomatic humans are not treated

high level of disease prevalence. However, a smaller proportion of mosquitoes become infected when
θ = 20 as shown in Figure 3 d.

In Figure 4 a,b, the population of humans and mosquitoes are gradually increasing. Figure 4 c,d,e,f
show the effect of different values of y0 on the various fractions of human population. We investigate
each of the human sub-populations as y0 varies from 0.00001 to 0.1 and the results show that there is
a unique steady state for each human compartment irrespective of the value of y0 except that it takes
a longer time to reach the steady state with a smaller y0. We note that the delay increases linearly
as y0 decreases exponentially as predicted by the analysis of section 4.74.

The results demonstrate the typical behaviour of rapid infection of susceptible individuals in a
malaria endemic region. Figure 5 a, b shows the relationship between the basic reproduction number
and the disease profile as it affects both mosquito and human populations. The disease establishes
itself for values of R0 > 1 and dies out if R0 < 1. The values of R0 were obtained by varying α and
R0 = 1 corresponds to α = 1.87. Figure 6 is a bifurcation diagram showing a switch from a disease
free state to an endemic state. The result is obtained by drawing the steady states of symptomatic
humans against different values of R0.

Each curve in Figure 7a represents the effect of θ on S for a given γ. The red curve in particular shows
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Figure 4: Results showing the human and mosquito populations (Figure 4 a,b) and the effect of introducing
different amount of infected mosquitoes on the various fractions of human population (Figure 4 c,d,e,f). The
values used for the simulations are the same as those in (Figure 3 c,d) except that for Figure 4 a,b we used
g = 21.02 and for (Figure 4 c,d,e,f) we have used the initial conditions, C = 1, I = 0, IA = 0, S = 0, A =
0, X = 1− y0, Y = y0, Z = 0, N = 1,M = 1 with different values of y0 as shown in the graphs
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Figure 5: Results showing the disease free state when R0 < 1 and the endemic state for R0 > 1 by varying
the value of R0 from 0 to 5. The parameter values used to obtain these results are given in Table 2 except
θ = 4.13. We used the parameter, α to change R0 where R0 = 5 corresponds to α = 9.35.
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Figure 6: Basic reproduction number (R0) bifurcation diagram. The curve shows a transcrital bifurcation
obtained by drawing the steady states of symptomatic humans against different values of R0 ranging from 0
to 3. Parameter values are the same as those in Figure5

that for a certain level of symptomatic treatment, γ = 60 people require a post disease treatment,
θ = 21 to drive the disease to extinction. Treatment of both symptomatic and asymptomatic humans
can easily lead to a disease free state. Figure 7b gives the variation of the amount of symptomatic
humans as gradually it increases from zero in the absence of post disease treatment.

In order to demonstrate the impact of the basic reproduction number on the dynamics of the
system, we plot the steady states of the various human and mosquito compartments against the basic
reproduction number (R0). Figures 5a,b show the disease free state when R0 is less than unity and for
R0 > 1 the disease invades both the human and mosquito populations. The plot shows a transcritical
bifurcation in the vicinity of R0 = 1, as is expected from the analysis. Although some uncertainty
still surrounds our quest on whether or not the disease invades the population at R0 = 1 the disease
free state is stable for values of R0 < 1, but becomes unstable when R0 > 1 whereas, the endemic
state becomes stable as expected.

The disease free state assumes that the entire mosquito and human populations are free from the
disease. Any simulation leading to S = 0, by varying the model parameters will not be valid if it
does not target C = 1 and X = 1. Hence we also demonstrate the effect of θ and γ on C and X in
Figure 8. The results show that as S → 0, there is the indication that with various combinations of
symptomatic and asymptomatic treatment, humans and mosquitoes will likely become free from the
disease.
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Figure 7: Plot of symptomatic humans against drug strength showing impact of clinical and post disease
treatment on malaria control. In Figure 7b, θ = 0, Whilst each curve in Figure 7a represents a plot of
symptomatic humans with a given level of treatment against different values of θ. Initial conditions and
parameter values are the same as those in Figure 3

Figure 8: Plot of susceptible humans and mosquitoes against drug strength. Parameter values and initial
conditions are the same as those in Figure 7. The disease dies out for different combined values of γ and θ.
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4.9 Discussion
Our model describes a typical situation of an endemic malaria. This is supported by the value of R0
for θ = 0, given as 33.4, obtained from data using (4.29). There is a high proportion of Incubating
asymptomatic humans since they require a longer time to loose infection before experiencing disease
symptoms. The numerical solution (Figure 3.3) shows that about 90% of the entire population will
be engulfed by the disease within a period of one year out of which about 8% will be sick and
would require medical attention in the hospital resulting in loss of man-hours. Although those mostly
affected by the disease are usually children and pregnant women [69]. This line of work is definitely
an extension for the future differentiating between adults and children to see the effects on both
different groups of people. The results also show that about 38% of the population would be carrying
a greater number of gametocytes without showing symptoms of the disease within the period whilst
approximately 32% of the population is asymptomatic and equally harbouring some levels of asexual
parasites due to their being infected from infectious mosquitoes despite their partial immunity. We
assume an equal transmission rate σh into the symptomatic compartment for both incubating and
incubating asymptomatic classes but the latter keeps on building up instead of moving into the
symptomatic class. Although, the asymptotic analysis shows approximately 90% of humans in the
incubating asymptomatic class, this does not in any way show that the results are not correct. The
reason for this disparity is that the analysis is based on the assumption that ε << 1 and we have
presented a simulation in this regard in section 4.7.6 that agrees well with the results of the analysis.

The model prediction seems plausible since immunity to malaria has always been associated with
continuous exposure to infection. In particular, [70] has shown that the rate of development of
clinical immunity to malaria correlates with the length of infection and that asymptomatic status is
reached sooner when the infections are longer. Although we expect this behaviour since incubating
asymptomatic individuals have partial immunity and are not expected to show disease symptoms
until they loose immunity, it rather portends a dangerous scenario which could pose serious threats
to the control of the disease especially if there happens to be a sudden upsurge of the disease in
the population if more of these individuals loose immunity within a short interval of time. This
is expected since, asymptomatic carriage may represent a mode of entry to symptomatic malaria
especially in young children [71] and in regions of high malaria transmission, every member of the
community might be chronically infected and as such there could be a high prevalence of sub-clinical
malaria [72].

A good mathematical model of epidemiology can be assesed on it’s application to disease control.
We consider γ as a treatment parameter due to the results of our time scale analysis. γ is the ratio
of rh and ia where rh is the recovery rate of symptomatic humans due to treatment and ia is the
loss of asymptomatic infection or simply, the recovery rate of asymptomatic humans. The duration
of untreated or inadequately treated P. falciparum infection ranges from 197 to 480 days [73] and
due to epidemiological observation of populations under treatment, the average duration of infection
reduces from 270 days to 14 days [74]. From results obtained by Tumwiine et al. [75], early, prompt
and proper treatment of symptomatic humans reduces the duration of infection to as low as 3 days.

In order to determine the effect of γ we consider an ideal situation where the duration of infection can
be reduced to zero through effective administration of treatment to symptomatic infectious human
on the first day of the observation of the disease symptoms such that the gametocytes are destroyed
or made inactive to the extent that they would not infect susceptible mosquitoes, i.e, rh ∈ [0,∞). We
deduce that increasing the duration of partial immunity increases R0. Acquisition of partial immunity

40



Malaria Transmission H.S

is beneficial to the individual who has it but could be detrimental to the entire population because
it increases the reservoir of infection. A strict suggestion by [76] demands that in order to bring a
disease under control in a population of varying size, we need to reduce the reservoir of infection to
zero with increasing time. We note that a faster way of reducing R0 is by reducing α, σ or f . The
only way of reducing γ is by increasing ia, the rate of immunity loss or the duration of asymptomatic
infection. We deduce that reducing the duration of asymptomatic infection reduces R0, which agrees
with the findings of [76]. We also introduce a post disease parameter θ ∈ [0,∞) aimed at reducing
the time partially immune humans spend in the asymptomatic and incubating asymptomatic classes.
An asymptotic analysis on the model with the treatment parameters shows that for θ = 0, the model
can only predict a disease free state when γ is of O(ε−3). In order to assess treatement success we
consider the distinguished limit case

γ = γ0

ε
, ε→ 0, γ →∞. (4.50)

with an assumption that for successful treatment to take place, S ∼ O(small), C ∼ 1+O(small) and
X ∼ 1 + O(small). The results suggest that treatment of symptomatic humans alone cannot lead
to the eradication of malaria but could only help in the management and control of the disease. We
deduce from our analysis that at leading order

R0 = 1
γ0

α̂f̂ ρ̂d̂

q̂(f̂ + q̂)
(4.51)

where γ0 = O(ε2) compares well with the one obtained using the next generation matrix. We
also consider the cases γ = 0 with treatment of asymptomatic humans and treatment of both sick
and partially immune individuals. The results show that there is the possibility of eradicating the
disease by treating both symptomatic and asymptomatic infectious humans. The key information we
derive from the treatment analysis is that if for instance, a particular drug of reasonable efficiency
administered on sick people requires O(ε−3 to bring the disease under control, then less effort of
O(ε−1) is required to achieve the same objective when combined with asymptomatic treatment effort
of O(ε−1).

Malaria transmission is a cyclic process of parasite transfer between human and mosquito populations.
While there is the likelihood of humans avoiding the irritating bites from mosquito’s, there seems to
be a natural or ecological demand from the female anopheles mosquito to feed on humans in order
to reproduce. Although the origin of the parasite is yet to be known, considering the process in one
direction, it seems the mosquito deposits young parasites during blood meal and later comes back to
ingest the matured form of the parasite and provide a conducive environment for its reproduction,
since it lacks the ability to reproduce sexually in the human host. The parasite spends a longer
time in the human host than in the vector and its within-host occupation apart from causing disease
pathology and mortality, also sets the pace for transmission to another host. If the host has a hash
environment inimical to the survival of the parasite then disease morbidity, mortality and transmission
will be greatly reduced. The immune system plays a great role in defending the host’s system against
foreign pathogens. This is an area that should be explored in greater detail at a later. Especially
looking at the differences between adult and child immune systems especially since children are the
ones that suffer the most from this disease.
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5 Conclusion
Malaria is an infectious disease with a dangerous global burden in which the quest for regional
elimination and entire global eradication cannot be over emphasized. In this work we have constructed
and analysed a mathematical model investigating a major area involving the transmission of the
disease between human and mosquito populations. Our transmission model describes human-mosquito
interaction on malaria epidemiology. Susceptible and asymptomatic humans get infected when they
are bitten by an infectious mosquito. They then progress through the incubating, symptomatic and
asymptomatic classes, before joining the the susceptible class again. Susceptible mosquitoes can
become infected when they bite symptomatic, asymptomatic or incubating asymptomatic humans,
once infected they move through the incubating and infectious mosquito classes. We used both
numerical simulations and analytical methods to obtain solutions to the system. The numerical
results show the model can predict an endemic malaria situation but for some values of the model
parameters a disease free state can be achieved.

Single dose malaria drugs do not completely clear parasites but temporarily create asymptomatic
malaria and this has not been considered in previous models. Another area of novelty is the second
class of incubating humans resulting from the reinfection of asymptomatic humans. We have proposed
and analysed a new transmission model incorporating these ideas. The methods of analysis employed
in previous malaria models have mainly focused on stability analysis. In our case we have used in
addition, asymptotic analysis to track the dynamics of disease transmission starting from an initial
introduction of a small amount of infected mosquitos into a malaria free human population. Through
our asymptotic analysis we have provided insight into the transmission of the disease as shown by
the numerical simulations. There are important remarks about the transmission of the disease, which
we have highlighted. The noticeable build-up of incubating asymptomatic humans at coexisting
steady state confirms previous experimental results that asymptomatic status is maintained through
continuous infection. This is a clear characteristic of the dynamics of malaria in an endemic region.
It portends a dangerous scenario and creates adverse effect on public policies aimed at control or
eradication of the disease. Although Ross [22] posits that to remove malaria in a region, the number
of mosquitos needs to be reduced below a particular threshold. Ngwa et al. [52] contend that this
approach would only be a temporary measure, especially in a malaria endemic region claiming that
the disease will resurface as the mosquito population recovers. My findings suggest that Ngwa’s
claim may hold in a situation whjere there is a high proportion of asymptomatic carriers. But if they
are treated then the disease will not resurface despite recovery of the mosquito population. If the
attainment of asymptomatic status is an advantage then it appears adults are gaining at the expense
of children and women (who may likely loose immunity during pregnancy). This gain may not be
sustained for a long time as the analysis demonstrates that asymptomatic individuals will rapidly
become incubating when the epidemic takes hold.

During the treatment analysis we considered options of transmitting treated incubating asymptomatic
humans to either the susceptible or incubating class but the basic reproduction number remains
unchanged in both cases. This suggests that partially immune individuals may be treated by
gametocyte destroying drugs only, or by drugs that act on both asexual parasites and gametocytes.
We recall from our previous discussion that the basic reproduction number R0 plays a vital role in
the dynamics of a disease. It is a threshold value that determines whether or not a disease will fully
establish itself. Comparing the R0 of our transmission model with that obtained in [37], we found
that there are additional parameters in our R0, namely σ, β, ρ, f, h, d which is due to the additional
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compartments found in our model. When the putative drug parameter, θ 6= 0, the term 1 + λ + θ
replaces 1 + λ and taking the limit as θ →∞ does not drive R0 to 0 but only reduces it to less than
unity depending on the values of the model parameters. This suggest that treating only asymptomatic
individuals, apart from being a mere epidemiological paradox would not guarantee disease eradication
except it is done with some form of vector control keeping the parameter α at a reasonable level. Our
result is a deterministic approach to the hypothesis given in [77]. Past and present policies of the WHO
for the elimination and eradication of malaria have been geared towards vector control and treatment
of symptomatic humans and despite the huge amount of money spent there are still reports of greater
part of the world population affected by the disease. The old Global Malaria Programme’s initiative,
T3, urged malaria-endemic countries to ensure that every suspected malaria case is tested, that every
confirmed case is treated with a quality-assured antimalarial medicine, and that the disease is tracked
through timely and accurate surveillance systems to guide policy and operational decisions [78]. Our
results suggest that testing, treating and tracking of suspected symptomatic cases without considering
the asymptomatic group that forms a greater part of the reservoir of infection will thwart the global
effort on the elimination and eradication of malaria. Although the issue of treating asymptomatic
humans may be difficult to control, in that it would take a lot of sensitisation and enlightenment
campaigns to be able to persuade people who are not having the symptoms of a disease to take
treatment. However, we suggest that ’Check Your Malaria Status’ (CYMS) be introduced along with
T3 having a relaunch in the countries most savaged by malaria.

5.1 Limitations of the model
Models are generally simplifications of reality and therefore subject to limitations. For instance in
an attempt to construct models to curb the shortcomings of previous models, we end up having a
model with other limitations. For example we have not considered the potential that many people
with a good immune system may go into the asymptomatic infectious state without being treated.
Also as the model stands we currently force people to pass through treatment to join back into their
respective classes this area could also do with improvement.
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5.2 Suggestions for future work
The model we have developed in this study are aimed at describing the dynamics of malaria transmission
with the aim of assessing possible elimination strategies. The model can be relevant in areas where
malaria has been persistently prevalent and regions that have achieved malaria elimination. However,
the model is a mere simplification of reality and some modifications are required for improvement,
which will provide directions for further studies. The following areas are included for consideration.

• Numerical simulations of the transmission model suggest that combined treatment of both
symptomatic and asymptomatic individuals will lead to malaria elimination. We propose pilot
studies in malaria endemic regions using this model as a theoretical framework.

• Environmental factors favourable to mosquito breeding also contribute to the pattern of disease
transmission. These factors may vary seasonally within a region or between regions. We propose
a model modification that will incorporate temperature and rainfall so as to ensure regional
specific results.

• An asymptotic expansion of R0 shows that the putative drug, θ, used for the treatment of
asymptomatic humans is not as effective as γ the full treatment parameter. Whilst in the
numerical simulations, θ appears to be much more effective in killing of the disease. The
mechanism for this behaviour is not yet known, and hence the need for further investigation.

• The immune systems are different for both adults and children, whilst the numerical simulations
gave us an indication towards who gains from an epidemic. I would like to take this further
and see how much of a difference the immune system will play in controlling malaria.

• I would also like to consider the scenario that not all humans will pass through the treatment
compartment as it may be that some may not receive the formal treatment they require. I
feel separating the two dynamics from those that pass through the treatment compartment and
those that don’t would add an interesting element to the paper.

This list is not exhaustive and it has not in any way invalidated the results of our work but we hope
that these suggestions will help to extend the frontier of knowledge and create a better direction in
the quest for malaria eradication.
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A APPENDIX A

A.1 Expressions for important constants in the stability analysis of transition
model
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4) +Q4 +Q5

F10 = a2
2Q1 +Q6Q7, F11 = a2a4a5(a3

4 + 2a2
4a5 + a4a

2
5 + 4a2a4a5 + a2a

2
5)

E1 = ασfρd,E2 = ασfb

45



Malaria Transmission H.S

A.2 Demonstrating the effect of inequalities obtained in 4.35 on R0

R0 = ασf [b(1 + λ+ θ) + ρd]
(σ + λ)(β + γ + ρ+ λ)(1 + λ+ θ)(f + q)(h+ q) (A.1)

σα

σ + λ
≤ q (A.2)

fb

f + q
≤ γ + λ (A.3)

fd

f + q
≤ λ(σ + θ + λ

σ + λ
(A.4)

We can show that if (A.2-A.4) hold, then R0 ≤ 1.

Numerator of A.1 = ασ[fb(1 + λ+ θ) + fρd] (A.5)

Denominator of A.1 = (σ + λ)(h+ q)[(λ+ γ)(1 + λ+ θ)(f + q) (A.6)

+[ρ(1 + λ+ θ)(f + q) + β(1 + λ+ θ)(f + q)]]

Comparing A.5 and A.6, from A.2 we can observe that

ασ ≤ (σ + λ)q ≤ (σ + λ)(h+ q) (A.7)

and from A.3 that
fb ≤ (γ + λ)(f + q) (A.8)

and hence
fb(1 + λ+ θ) ≤ (γ + λ)(f + q)(1 + θ + λ). (A.9)

Also, from A.4,

fd ≤ λ(f + q)(σ + λ+ θ)
σ + λ

→ fd ≤ (f + q)(1 + λ+ θ), since 1 + λ+ θ >
λ(σ + λ+ θ)

σ + λ
(A.10)

Thus the numerator of A.1 is less than the denominator, meaning R0 < 1.
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B APPENDIX B

B.1 Time-scale analysis
By letting θ = 0, we present the time scale analysis of the dimensionless system

ε2
dC

dt
= ε4λ̂+ εγ̂S + ε2A− α̂ZC − ε4λ̂C + ε4β̂CS, (B.1)

ε2
dI

dt
= α̂ZC − εσ̂I − ε4λ̂I + ε4β̂IS, (B.2)

ε2
dIA
dt

= α̂ZA− εσ̂IA − ε4λ̂I4 + ε4β̂IAS (B.3)

ε2
dS

dt
= εσ̂I + εσ̂IA − (ρ̂+ εγ̂ + ε4β̂ + ε4λ̂)S + ε4β̂S2, (B.4)

ε2
dA

dt
= ρ̂S − (ε2 + ε4λ̂)A− α̂ZA+ ε4β̂AS, (B.5)

ε
dX

dt
= q̂(1−X)− b̂SX − d̂AX − d̂IAX + εĥY Z, (B.6)

ε
dY

dt
= b̂SX + d̂AX + d̂IAX − (f̂ + q̂)Y + εĥY Z (B.7)

ε
dZ

dt
= f̂Y − (εĥ+ q̂)Z + εĥZ2. (B.8)

subject to
C(0) = 1, I(0) = 0, IA(0) = 0, S(0) = 0, A(0) = 0

Y (0) = y0, X(0) = 1− y0, Z(0) = 0, ε << 1, y0 << ε

in which all parameters are expressed in terms of their size as a power of ε indicated in table 2, namely

α = 1
ε2
α̂, σ = 1

ε
σ̂, µ = ε2µ̂, λ = ε2λ̂, γ = 1

ε
γ̂, ρ = 1

ε2
ρ̂. (B.9)

b = 1
ε
b̂, d = 1

ε
d̂, f = 1

ε
f̂ , g = 1

ε
ĝ, h = ĥ, q = 1

ε
q̂.

We analyse this system for the case of newly introduced infected mosquitoes to a previously uninfected
region.
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B.2 Time scale 1: t = O(ε2)
• Scaling: t = ε2t̂,

C ∼ 1 + εy0Ĉ1, I ∼ εy0Î0, IA ∼ ε3y2
0 ÎA0 , S ∼ ε2y0Ŝ0

A ∼ ε2y0Â0, X ∼ 1− y0 + εy0X̂1, Y ∼ y0 + εy0Ŷ1, Z ∼ εy0Ẑ0.

Substituting these scaling’s into the dimensionless system leads to the following equations:

dĈ1

dt̂
= −α̂Ẑ0(1 + εy0Ĉ1) + ε2(γ̂Ŝ0 + Â0)− ε4λ̂Ĉ1 + ε5β̂(1 + εy0Ĉ1)Ŝ0

dÎ0

dt̂
= α̂Ẑ0(1 + εy0Ĉ1)− εσ̂Î0 − ε4λ̂Î0 + ε6y0β̂Î0Ŝ0

dÎA0

dt̂
= α̂Â0Ẑ0 − εσ̂ÎA0 − ε4λ̂ÎA0 + ε6y0β̂ÎA0Ŝ0

dŜ0

dt̂
= σ̂Î0 − ρ̂Ŝ0 + ε2y0σ̂ÎA0 − (εγ̂ + ε4β̂ + ε4λ̂)Ŝ0 + ε6y0β̂Ŝ0

2

dÂ0

dt̂
= ρ̂Ŝ0 − (ε2 + ε4λ̂)Â0 − εy0α̂Ẑ0Â0 + ε6y0β̂Â0Ŝ0

dX̂1

dt̂
= q̂(1− εX̂1)− ε2b̂Ŝ0(1− y0 + εy0X̂1)− ε2d̂Â0(1− y0 + εy0X̂1

+ε2ĥ(1− y0 + εy0X̂1)Ẑ0 − ε3y0d̂ÎA0(1− y0 + εy0X̂1)

dŶ1

dt̂
= −(f̂ + q̂)(1 + εŶ1) + ε2b̂Ŝ0(1− y0 + εy0X̂1) + ε2d̂Â0(1− y0 + εy0X̂1

+ε2ĥ(1− y0 + εy0Ŷ1)Ẑ0) + ε3y0d̂ÎA0(1− y0 + εy0X̂1

dẐ0

dt̂
= f̂(1 + εŶ1)− ε(q̂ + εĥ)Ẑ0 + ε3y0ĥẐ0

2

We see the system changes balance at t̂ = O(ε−2/3) This happens in the Y equation as the lower order
term εd̂Â0 catches up with the O(1) term f̂ + q̂ We observe from the solution in this timescale that
Â0 = O(t3). Thus ε2t̂3 = O(1) implies that t̂ = O(ε−2/3). We note that y0 << ε and t̂ = O(ε−2/3) is
the smallest time in which the asymptotic expansion will no longer be valid.

B.3 Time scale 2: t = O(ε4/3)
• Scalings: t = ε4/3t̄

C ∼ 1 + ε−1/3y0C̄1, I ∼ ε−1/3y0Ī0, IA ∼ ε−1/3y2
0IA0 , S ∼ ε2/3y0S̄0,

A ∼ y0Ā0, X ∼ 1− y0 + ε1/3y0X̄1, Y ∼ y0 + ε1/3y0Ȳ1, Z ∼ ε1/3y0Z̄0.

On substitution into the dimensionless system we have

• Equations
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dC̄1

dt̄
= −α̂Z̄0(1 + ε−1/3y0C̄1) + ε4/3(γ̂S̄0 + ε1/3Ā0)− ε4λ̂C̄1 + ε13/3β̂(1 + ε−1/3y0C̄1)S̄0

dĪ0

dt̄
= α̂Z̄0(1 + ε−1/3y0C̄1)− ε1/3σ̂Ī0 − ε10/3λ̂Ī0 + ε4y0β̂Î0Ŝ0

dĪA0

dt̄
= α̂Ā0Z̄0ε

1/3σ̂ĪA0 − ε10/3λ̂ĪA0 + ε4y0β̂ÎA0Ŝ0

ε2/3
dS̄0

dt̄
= σ̂Ī0 − ρ̂S̄0 + y0σ̂ĪA0 − (εγ̂ + ε4β̂ + ε4λ̂)S̄0 + ε−14/3y0β̂S̄0

2

dĀ0

dt̄
= ρ̂S̄0 −

y0

ε1/3
α̂Z̄0Ā0 − (ε4/3 + ε10/3λ̂)Ā0 + ε4y0β̂Â0Ŝ0

dX̄1

dt̄
= q̂(1− ε1/3X̄1)− d̂Ā0(1− y0 + ε1/3y0X̄1)− ε2/3b̂S̄0(1− y0 + ε1/3y0X̄1)

− y0

ε1/3
d̂ĪA0(1− y0 + ε1/3y0X̄1) + ε4/3ĥ(1− y0 + ε1/3y0X̄1)Z̄0

dȲ1

dt̄
= −(f̂ + q̂)(1 + ε1/3Ȳ1) + d̂Ā0(1− y0 + ε1/3y0X̄1) + ε2/3b̂S̄0(1− y0 + ε1/3y0X̄1)

+ y0

ε1/3
d̂ĪA0(1− y0 + ε1/3y0X̄1) + ε4/3y0ĥ(1 + ε1/3y0Ȳ1)Z̄0

dZ̄0

dt̄
= f̂(1 + ε1/3y0Ȳ1)− ε1/3(εĥ+ q̂)Z̄0 + ε5/3y0ĥZ̄0

2

Solutions in this timescale suggest that X1 = O(t̄4) and the approximations become poor when the
second term ε1/3t̄4 becomes O(1), i.e t̄4 = O(ε−1/3). This leads to a breakdown in the X equation
when t̄ = O(ε−1/12).

B.4 Time Scale 3: t = O(ε5/4)
• Scaling: t = ε5/4t̃

C ∼ 1 + ε−1/2y0C̃1, I ∼ ε−1/2y0Ĩ0, IA ∼ ε−3/4y2
0 ĨA0 , S ∼ ε1/2y0S̃0

A ∼ ε−1/4y0Ã0, X ∼ 1 + y0X̃1, Y ∼ y0Ỹ1, Z ∼ ε1/4y0Z̃0

By substituting the scalings into the dimensionless system and carrying out some simplifications we
get the following

• Equations

dC̃1

dt̃
= −α̃Z̃0(1 + ε−1/2y0C̃1) + ε3/2(Ã0 + ε1/4γ̂S̃0)− ε13/4λ̂C̃1 + ε9/2β̂(1 + ε−1/2y0C̃1)S̃0

dĨ0

dt̃
= α̃Z̃0(1 + ε−1/2y0C̃1)− ε1/2σ̂Ĩ0 + ε15/4y0β̂Ĩ0S̃0

d ˜IA0

dt̃
= α̂Ã0Z̃0 − ε1/4σ̂ ˜IA0 − ε13/4λ̂ ˜IA0 + ε15/4y0β̂Ĩ0S̃0

ε1/2
dS̃0

dt̃
= σ̂Ĩ0 − ρ̂S̃0 + y0

ε1/4
σ̂ ˜IA0 − (εγ̂ + ε4β̂ + ε4λ̂)S̃0 + ε4y0β̂S̃0

2
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dÃ0

dt̃
= ρ̂S̃0 −

y0

ε1/3
α̂Z̃0Ã0 − (ε5/4 + ε13/4λ̂)Ã0 + ε15/4y0β̂Ã0S̃0

dX̃1

dt̃
= −d̂Ã0(1 + y0X̃1)− ε1/4q̂X̃1 − ε3/4b̂S̃0(1 + y0X̃1)− ε1/2y0d̂ĨA0(1 + y0X̃1)

ε3/2ĥ(1 + y0X̃1)Z̃0

dỸ1

dt̃
= d̂Ã0(1 + y0X̃1)− ε1/4(f̂ + q̂)Ỹ1 + ε3/4b̂S̃0(1 + y0X̃1) + ε1/2y0d̂ĨA0(1 + y0X̃1)

+ε3/2y0ĥỸ1Z̃0

dZ̃0

dt̃
= f̂ Ỹ1 − ε1/4(q̂ + εĥ)Z̃0 + ε3/2y0ĥZ̃0

2

The governing equation of the system is d4Z̃0
dt̃4

= KZ̃0 obtained by successive differentiation of dZ̃0
dt̃

where
K = α̂σ̂f̂ d̂ and for K0 = K1/4, change in balance occurs in the C solution when t̃ = ln(ε1/2/y0)/K0.

B.5 Time scale 4: t = ε5/4ln(ε1/2/y0)/K0 +O(ε5/4)

• Scalings: t = ε
5
4 ln(ε 1

2/y0)/K0 + ε
5
4 ť

C ∼ Č0, I ∼ Ǐ0, IA ∼ ε1/4ǏA0, S ∼ εŠ0, A ∼ ε1/4Ǎ0,

X ∼ 1 + ε1/2X̌1, Y ∼ ε1/2Y̌1, Z ∼ ε3/4Ž0.

• Equations

dČ0

dť
= −α̂Č0Ž0 + ε3/2(Ǎ0 + ε1/4γ̂Š0)− ε13/4λ̂(1− Č0 + ε17/4β̂Č0Š0

dǏ0

dť
= α̂Č0Ž0 − ε1/4σ̂Ǐ0 − ε13/4λ̂Ǐ0 + ε17/4β̂Ǐ0Š0

dǏA0

dť
= α̂Ǎ0Ž0 − ε1/4σ̂ǏA0 − ε13/4λ̂ǏA0 + ε17/4y0β̂ǏA0Š0

ε3/4
dŠ0

dť
= σ̂Ǐ0 − ρ̂Š0 + ε1/4σ̂ǏA0 − (εγ̂ + ε4β̂ + ε4λ̂)Ŝ0 + ε5β̂Š0

2

dǍ0

dť
= ρ̂Š0 − α̂Ž0Ǎ0 − (ε5/4 + ε13/4λ̂)Ǎ0 + ε17/4β̂Ǎ0Š0

dX̌1

dť
= −d̂Ǎ0(1 + ε1/2X̌1)− d̂ǏA0(1 + ε1/2X̌1)− ε1/2q̂X̌1 − ε3/4b̂Š0(1 + ε1/2X̌1)

ε3/2ĥ(1 + ε1/2X̌1)Ž0

dY̌1

dť
= d̂Ǎ0(1 + ε1/2X̌1) + d̂ǏA0(1 + ε1/2X̌1) + ε3/4b̂Š0(1 + ε1/2X̌1)− ε1/2(f̂ + q̂)Y̌1

+ε2ĥY̌1Ž0

dŽ0

dť
= f̂ Y̌1 − ε1/4(q̂ + εĥ)Ž0 + ε2ĥŽ0

2
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Some simplification leads to the following fourth order nonlinear ordinary differential equation that
determines the dynamics of the system

d4F̌

dť4
= −K(1− eF̌ )

F̌ = ln(Č0)

Major breakdown of the solutions occur in the X equation where the X1 term becomes O(1), i.e when
ť = O(ε−1/4)

B.6 Time scale 5: t = O(ε)
• Scalings: t = εt∗

C ∼ ε2C∗0 , I ∼ I∗0 , IA ∼ IA
∗
0, S ∼ εS∗0 , A ∼ εA∗0, X ∼ X∗0 , Y ∼ Y ∗0 , Z ∼ Z∗0 ,

• Equations

ε
dC∗0
dt∗

= α̂C∗0Z
∗
0 + γ̂S∗0 + ε, A∗0 − ε2λ̂(1− ε2C∗0) + ε4β̂C∗0S

∗
0

dI∗0
dt∗

= −σ̂I∗0 + εα̂Z∗0C
∗
0 − ε3λ̂I∗0 + ε4β̂I∗0S

∗
0

dIA
∗
0

dt∗
= α̂Z∗0A

∗
0 − σ̂IA∗0 − ε3λ̂IA∗0 + ε4β̂IA

∗
0S
∗
0

ε
dS∗0
dt∗

= σ̂(I∗0 + IA
∗
0)− ρ̂S∗0 − (εγ̂ + ε4β̂ + ε4λ̂)S∗0 + ε5β̂S2∗

0

ε
dA∗0
dt∗

= ρ̂S∗0 − α̂Z∗0A∗0 − (ε2 + ε4λ̂)A∗0 + ε4β̂A∗0S
∗
0

dX∗0
dt∗

= q̂(1−X∗0 )− d̂IA∗0X∗0 − ε(b̂S∗0X∗0 + d̂A∗0X
∗
0 − ĥX∗0Z∗0)

dY ∗0
dt∗

= d̂IA
∗
0X
∗
0 − (f̂ + q̂)Y ∗0 + ε(b̂S∗0X∗0 + d̂A∗0X

∗
0 − ĥX∗0Z∗0)

dZ∗0
dt∗

= f̂Y ∗0 − q̂Z∗0 − εĥ(1− Z2∗
0 )

The approximation to I will no longer be O(1) when t = ln(1/ε)/σ.

B.7 Time scale 6: t = εln(1/ε)/σ +O(ε)
• Scalings: t = (1/ε)/σ̂ + εt

′

C ∼ ε2C
′

0, I ∼ εI
′

0, IA ∼ 1, S ∼ εS
′

0, A ∼ εA
′

0, X ∼ X
′

0, Y ∼ Y
′

0 , Z ∼ Z
′

0

• Equations

51



Malaria Transmission H.S

ε
dC

′
0

dt′
= −α̂C ′0Z

′

0 + γ̂S
′

0 + εA
′

0 − ε2λ̂(1− ε2C ′0) + ε4β̂C
′

0S
′

0

dI
′
0

dt′
= −σ̂I ′0 + α̂Z

′

0C
′

0 − ε3λ̂I
′

0 + ε4β̂I
′

0S
′

0

dIA
′
0

dt′
= α̂Z

′

0A
′

0 − σ̂IA
′

0 − ε3λ̂IA
′

0 + ε4β̂IA
′

0S
′

0

ε
dS
′
0

dt′
= σ̂IA

′

0 − ρ̂S
′

0 + εσ̂I
′

0 − (εγ̂ + ε4β̂ + ε4λ̂)S ′0 + ε5β̂S2′
0

ε
dA

′
0

dt′
= ρ̂S

′

0 − α̂Z
′

0A
′

0 − (ε2 + ε4λ̂)A′0 + ε4β̂A
′

0S
′

0

dX
′
0

dt′
= q̂(1−X ′0)− d̂IA

′

0X
′

0 − ε(b̂S
′

0X
′

0 + d̂A
′

0X
′

0 − ĥX
′

0Z
′

0)

dY
′

0
dt′

= d̂IA
′

0X
′

0 − (f̂ + q̂)Y ′0 + ε(b̂S ′0X
′

0 + d̂A
′

0X
′

0 − ĥX
′

0Z
′

0)

dZ
′
0

dt′
= f̂Y

′

0 − q̂Z
′

0 − εĥ(1− Z2′
0 )

Other variables maintain their steady status and IA0 ∼ 1, and the only remaining equation is

dI
′
0

dt′
= γ̂σ̂

ρ̂
− σ̂I ′0.
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