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Abstract

This thesis is a computational and analytical look of reaction diffusion systems, which are
coupled PDEs describing the diffusion behaviour and reaction of two interacting chemi-
cals. Under certain conditions, such systems are able to generate stationary patterns of
finite characteristic wave lengths. The properties of the resulting patterns are determined
internally by the diffusion and reaction rates of the chemicals. In research Turing pat-
terns have been shown to have an important place in the world and thus reaction diffusion
systems which exhibit Turing patterns could provide a credible way to model the pro-
cesses involved in biological problems. Turing patterns are born out of certain models
due to diffusion-driven instability which is caused by infinitesimal perturbations around a
spatially homogeneous steady state of a model. Systems have been studied using mathe-
matical tools and numerical simulations. We then consider noise as an input to the system
which gives us a pair of coupled SPDEs. Using numerical simulations we will be able
to investigate the behaviour and the impact that noise plays on generating these Turing
patterns.
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Chapter 1

Introduction

In nature patterns can be observed in various different parts of it, these extend from pat-
terning of the human veins to complex sand dunes even in embryonic development. These
mechanisms, such as diffusion driven instability, which cause patterning are involved heav-
ily in both the animal and plant kingdoms. What mechanisms regulate pattern formation
and how animals get the patterns on their coats is still a relevant question in todays re-
search [1, 2, 3]. Until recently we had very little knowledge on how organisms that exist
in this world develop into much larger complex organisms, even with new research for the
most part we don’t understand most of the biological systems in our world. One of the
main reasons for this is the large amount of diversity that exists in the animal and plant
kingdom. During the initial stages of embryonic development mechanisms occur which
create the organism, however the mechanisms involved in creating the spatial patterns on
the organism i.e it’s organs, body parts etc are still widely unknown. Despite there been
many different proposed theories over the years, very little progress has been made in the
field of developmental biology. Before the beginning of the 20th century there were only
descriptive theories, none of which could be verified experimentally. In the 1960s new ideas
arose which also came alongside new computers, using these scientists were able to shed a
bit more light on the mechanisms involved. Now it seemed as if we could study naturally
occurring phenomena experimentally. Pattern formation has been proposed as one of the
main explanations as to how the homogenous division of cells can lead to spatial pattern
formation in embryos [4, 5]. Some may argue that genes play an important role in the
formation of patterns, genes do answer a lot of questions regarding the mechanisms that
are involved in the developmental stage. However, on their own they are not sufficient
enough to provide an explanation for the spatial distribution of patterns.

Figure 1.1: A 3D simulation of the early stages on embryonic development [6]
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It is obvious that other processes must undergo the steps required for pattern formation.
In a survey made among developmental biologists [7],a large proportion referred to the
molecular processes of morphogenesis and how patterns are established in the early em-
bryonic development as one of the most interesting and difficult problems that is unsolved
in biological sciences today.

Models used to describe the formation of patterns in the past have been a mixture of
both stochastic and deterministic ones. Models which are subject to no noise are termed
deterministic, ones that undergo some noise are termed stochastic. One way to think
about noise is that noise in a model can account for random effects that we can’t possibly
accurately model. As an examples some types of noise are white noise, Brownian noise,
Gaussian noise and Levey noise please refer to [8, 9, 10] for an indepth discussion on the
different types of noise. Noise is a ever-present occurrence in the natural world and will
always play a vital role in impacting biological systems. Hausenblas et al. [33] investigated
stochastic Gray-Scott equations proving some existence results for the equations while also
simulating the deterministic and stochastic equations and showing how the patterns can
vary when the noise is a independent spatially time-homogeneous Wiener processes. Su-
rulescu and Kelkel [34] investigated the stochastic Gierer–Meinhard system they prove the
existence of a positive solution for the resulting system then use numerical simulations
to characterize pattern formation on seashells under the influence of random space–time
fluctuations. Sun et al. [11] showed that noise can make a circle pattern transform into
target wave-like patterns thorugh numerical simulations. Scarsoglio et al. [12] presented
different stochastic processes of spatial pattern formation using a variable as a noise effect
in the system. Hori and Hara [13] provided a mechanistic basis of Turing pattern formation
through inducing internal noise. Many studies have been presented in these research areas
[14, 15, 16], however theory on Turing bifurcation and pattern formation in biological
systems was rarely studied.

This thesis will begin with formulating the general models of reaction-diffusion systems
and stochastic reaction diffusion systems we shall analyse the systems through a range of
stability analysis and numeric in order to look for Turing type pattern formation. The idea
that diffusion can destabilise the specially homogeneous steady sate of a model and result
in formation of periodic patterns was first investigated by Alan Turing. This was revolu-
tionary, since usually diffusion have smoothing and stabilising effect. However a specific
relation between diffusion coefficients in the system and reaction we obtain diffusion driven
instability and those reaction-diffusion systems can model patterns observed in nature. He
published the mathematical theory in his seminal paper “The Chemical Basis of Morpho-
genesis” [17] in 1952. Similar analysis will be performed on the deterministic systems,
then considering a specific type of perturbation we will derive conditions for when we can
expect Turing patterns to appear when a specific type forcing is present in a system. Then
we shall investigate the effect of stochastic forcing on our reaction diffusion systems .

The aim of this thesis is to investigate and analyse the effect of noise and sensitivity
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of biological systems. We then round off the thesis by examining a model of chemotaxis
and exploring the effect of noise, seeing how this affects the behaviour of the deterministic
model.
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Chapter 2

Reaction Diffusion and Chemotaxis
Equations

Here we shall consider the general set up for all of the equations that we shall analyse in
this thesis.

2.1 Deterministic Reaction Diffusion (DRD)

The general deterministic reaction diffusion system has the form

∂u

∂t
= Du∆u+ f(u, v), in D × (0, T ),

∂v

∂t
= Dv∆v + g(u, v) in D × (0, T ),

(2.1)

Du∇u · ν = 0 and Dv∇v · ν = 0 on ∂D × (0, T ),

u(0) = u0, v(0) = v0 on D.
(2.2)

Where D ⊂ Rd is a bounded, Lipschitz domain.
We assume that we have two chemicals u(x, t), v(x, t) that will react and diffuse. Here
f(u, v), g(u, v) control the reaction kinetics of the two chemicals. Du, Dv > 0 are the
diffusion coefficients, and u0, v0 > 0 are the inital conditions for the system. We shall
assume that we also have a positive spatially homogeneous steady state (us, vs), satisfying
f(us, vs) = g(us, vs) = 0.

Notice that the non-linearities in (2.1) depend on the variables u, v and not on the partial
derivatives of u and v. Such equations are called semilinear problems.

We will now define each of the individual models that we shall study here.
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2.1.1 FitzHugh–Nagumo model (FHN)

The FitzHugh–Nagumo model (FHN), is named after Richard FitzHugh who first created
the system in 1961, then J. Nagumo et al. extended the model to describe an excitable
system e.g a neuron. FitzHugh–Nagumo model [18, 19] is a relaxation oscillator because,
if the stimulus which is created externally exceeds a certain threshold value, the system
will show a limit cycle in its phase space, then the variables u and v will clam and relax
back to their inital pre stimulus levels. This behaviour is often seen in spike generations
which is a short, nonlinear increase in the voltage of the membrane u, which is diminished
over time by a slower, recovery variable v, which is linear. The equations that describe
this system take the form

∂u

∂t
= (a− u)(u− 1)u− v +Du∆u,

∂v

∂t
= e(bu− v) +Dv∆v,

(2.3)

together with the initial and boundary conditions (2.2). The a, e, b > 0 are the reaction
rates for each individual reaction.

2.1.2 Brusselator model (Bru)

The Brusselator model is a theoretical realisation for an autocatalytic reaction. The Brus-
selator model was proposed by Ilya Prigogine and his coworkers [20].

The non-dimensional model reads

∂u

∂t
= a− (b+ 1)u+ v2y +Du∆u,

∂v

∂t
= bu− u2v +Dv∆v,

(2.4)

together with the initial and boundary conditions (2.2). Here a, b > 0 are constants of the
reaction.

2.1.3 Schnakenberg model (Sch)

In 1979 Schnakenberg [21] described a system that demonstrates oscillations in a simple
chemical network. The non-dimensional model reads

∂u

∂t
= a− u+ u2v +Du∆u,

∂v

∂t
= b− u2v +Dv∆v,

(2.5)

together with the initial and boundary conditions (2.2). Here a, b > 0 are constants of the
reaction.
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2.2 Peturbed Reaction Diffusion (PRD)

We now make a slight extension to our general reaction diffusion system (2.1) by incor-
porating a deterministic perturbation around the steady state. This perturbation around
the steady state will ensure that the solutions remain positive, due to our assumption of a
positive steady state. The general equations are

∂u

∂t
= Du∆u+D1R1(u, v)ζ1 + f(u, v),

∂v

∂t
= Dv∆v +D2R2(u, v)ζ2 + g(u, v),

(2.6)

We use the same boundary and initial conditions specified in (2.2). We define the pertur-
bation terms to be

ζ1 =
1√
2πσ

e−
(u−us)2

2σ2 ,

ζ2 =
1√
2πσ

e−
(v−vs)2

2σ2 ,
(2.7)

and
R1(u, v) = u− us,
R2(u, v) = v − vs.

(2.8)

So we can see the noise terms follow the distributions similar to a normal distribution. It
is important to remember this is not a random variable just a deterministic perturbation.
This choice of perturbation will aide us when we derive the analytical conditions for pattern
formation which will become apparent later.

2.2.1 Perturbed FitzHugh–Nagumo model (PFHN)

The perturbed system (2.3) is given by

∂u

∂t
= (a− u)(u− 1)u− v +Du∆u+D1(u− us)ζ1,

∂v

∂t
= e(bu− v) +Dv∆v +D2(v − vs)ζ2,

(2.9)

where ζ1, ζ2 are defined in (2.7). We also implore the same boundary and initial conditions
stated in (2.2). D1, D2 > 0 are our perturbation magnitudes.

2.2.2 Perturbed Brusselator Model (PBru)

Considering the perturbation in system (2.4) the model reads

∂u

∂t
= a− (b+ 1)u+ u2v +Du∆u+D1(u− us)ζ1,

∂v

∂t
= bu− u2v +Dv∆v +D2(v − vs)ζ2,

(2.10)
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where ζ1, ζ2 are defined in (2.7). We also implore the same boundary and initial conditions
stated in (2.2). D1, D2 > 0 are perturbation magnitudes.

2.2.3 Perturbed Schnakenberg Model (PSch)

Adding the perturbation to the system (2.5) the model reads

∂u

∂t
= a− u+ u2v +Du∆u+D1(u− us)ζ1,

∂v

∂t
= b− u2v +Dv∆v +D2(v − vs)ζ2,

(2.11)

where ζ1, ζ2 are defined in (2.7). We also implore the same initial and boundary conditions
stated in (2.2). D1, D2 > 0 are our perturbation magnitude.

2.3 Stochastic Reaction Diffusion (SRD)

We now consider an extension of the basic deterministic reaction diffusion system in order
to accommodate for space-time noise. The general equations read

du(t, x) = [D1∆u+ f(u, v)]dt+ σ1(u, v)dW (t) in D × (0, T ),

dv(t, x) = [D2∆v + g(u, v)]dt+ σ2(u, v)dW (t) in D × (0, T ),
(2.12)

where W (t) is the Q-Wiener process. A good way to think of this term is as the derivative
of a Q-Wiener process see definition (2.6). We then also will refer to σ1(u, v), σ2(u, v) as
our noise intensity. We also use the same boundary and initial conditions specified in (2.2).
In the stochastic setting we can either have additive or multiplicative noise. If the noise
is additive this is the situation where σ1(u, v) and σ2(u, v) are constant. If the noise is
multiplicative noise this means that the noise pertubation depends on the variable itself.
Which is the situation in which we shall consider our numerical simulations in chapter 4.
Now we have the general set up for SRD equations we shall provide a definition for what
a Q-Wiener process actually is.

We first give the definition of a filtered probability space

Definition 2.4. Let (Ω,F , P ) be a filtered probability space which consists of our sample
space Ω, a set of events F and a probability measure P .

• A filtration {Ft : t ≥ 0} is a family of sub σ-algebras of F that are increasing. Fs is
a sub σ-algebra of Ft for s ≤ t. Each (Ω,Ft, P ) is a measure space and we assume it
is complete.

• A filtered probability space is a quadruple (Ω,F ,Ft, P ) where (Ω,F , P ) is a proba-
bility space and {Ft : t ≥ 0} is a filtration of F .
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Stochastic processes that conform to the notion of time described by the filtration above
are known as adapted processes

Definition 2.5 (Adapted). Let (Ω,F ,Ft, P ) be a filtered probability space. We say a
Stochastic process X(t) is Ft-adapted if the random variable X(t) is Ft measurable for all
time.

We now define the standard Wiener process over this filtered probability space.

Definition 2.6 (Wiener Process). We say {W (t) : t ∈ R+} is a Wiener process if it
is a real valued Gaussian process with continuous sample paths, with a mean function
µ(t) = E[W (t)] = 0 and covariance function C(t,s)=min{t,s}. Also we can say that W(t)
is a Weiner process such that

1. W(0)=0.

2. The increments W (t)−W (s) ∼ N(0, t− s) for t ≥ s and the increments over disjoint
intervals are independent of F for s < t.

3. W(t) is continuous as a function of t for each ω ∈ Ω.

This is then often the forcing that is used to study SDEs however we notice that it has no
spatial dependence at all. We first need a couple of definitions from [30] in order to define
a Q-Weiner process

Definition 2.7 (uncorrelated, covariance operator). A linear operator η : L2(D) =⇒
L2(D) is the covariance of L2(D)−valued random variables X and Y if

〈ηθ, ψ〉 = Cov(〈X, θ〉, 〈Y, ψ〉),∀θ, ψ ∈ L2(D),

where Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])T ] and we can define

〈X, Y 〉L2(Ω,L2(D) =

∫
Ω

〈X(ω), Y (ω)〉dP (ω) = E[〈X, Y 〉].

In the case that X=Y we say that η is the covariance of X

From the above the definition we then can derive the following lemma

Lemma 2.7.1. Let X ∈ L2(D) with mean µ and covariance operator η. The covariance
operator η is symmetric non-negative definite and is of trace class with Tr= E[||X − µ||2]

We are now in a position to properly define our Q-Wiener process, define the Q-Wiener
process {W (t) : t ≥ 0} as a L2(D)-valued process. Each W(t) is a L2(D)-valued Gaussian
random variable and each has a well defined covariance operator. The covariance operator
at t=1 is denoted Q and by lemma 2.7.1, it must satisfy the following assumption
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Assumption 2.7.2. Q ∈ L2(D) is non-negative definite and symmetric. Also Q has an
orthonormal basis {γj : j ∈ N} of eigenfunctions with corresponding eigenvalues qj ≥ 0
such that

∑
j∈N qj <∞ i.e Q is of trace class.

Recalling the Definition 2.4,2.5 above we can define the Q-Wiener process

Definition 2.8 (Q-Wiener Process). A L2(D)-valued stochastic process {W (t) : t ≥ 0} is
a Q-Wiener process if

1. W (0) = 0,

2. W (t) is a continuous function R+ =⇒ L2(D) for each ω ∈ Ω,

3. W (t) is Ft-adapted and W (t)−W (s) is independent of F for s < t and,

4. W (t)−W (s) ∼ N(0, (t− s)Q) for all 0 ≤ s ≤ t,

where Q satisfies assumption 2.72.

We can also represent the Q-Wiener process as a linear combination of the eigenfunctions
γj of Q.

Theorem 2.8.1. Let Q satisfy Assumption 2.7.2. Then W(t) is a Q-Wiener process if and
only if

W (t) =
∞∑
j=1

√
qjγjβj(t),

where βj(t) are identically independently distributed Ft-Wiener processes and the series
converges in L2(Ω, L2(D)). γj are the eigenfunctions of Q and qj are the eigenvalues of Q.

For the proof see [30] p.g 437.

We will now define all our specific stochastic models which we shall use to reference back
to later.

2.8.1 Stochastic FitzHugh–Nagumo model (SFHN)

Using the non-dimensional equations (2.3) we add the extra noise term we then have the
SFHN,

du = [(a− u)(u− 1)u− v +Du∆u]dt+ σ1(u, v)dW (t),

dv = [e(bu− v) +Dv∆v]dt+ σ2(u, v)dW (t).
(2.13)

We also implore the same boundary and initial conditions used in (2.2).
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2.8.2 Stochastic Brusselator Model (SBru)

Adding the additional noise term to the system (2.4) we get

du = [a− (b+ 1)u+ u2v +Du∆u]dt+ σ1(u, v)dW (t),

dv = [bu− u2v +Dv∆v]dt+ σ2(u, v)dW (t),
(2.14)

we also implore the same boundary and initial conditions used in (2.2)

2.8.3 Stochastic Schnakenberg Model (SSch)

Finally, adding the noise term to system (2.5) the model reads

du = [a− u+ u2v +Du∆u]dt+ σ1(u, v)dW (t),

dv = [b− u2v +Dv∆v]dt+ σ2(u, v)dW (t),
(2.15)

we implore the same initial and boundary conditions used in (2.2).

2.9 Chemotaxis

Chemotaxis occurs when a cell is stimulated to move as a result of a chemical attractant.
For example skeletal formation during embryonic development cells often display directed
movement as a result of chemicals [26, 27], an example of this is cell aggregation as a
result of cAMP waves, which we will talk about more in detail soon.

We will set up a general system where the cell density u travels up the gradient of a
chemical v. If a cell moves up a chemical gradient (i.e. towards high concentrations of the
chemical) then the chemical is known as a chemoattractant, conversely if a cell moves down
a chemical gradient (i.e. towards low concentrations of the chemical) then the chemical is
known as a chemorepellent.

2.9.1 Chemotaxis System (DCS)

Given a cell density u and a chemical concentration v we can set up the general system of
equations for chemotaxis.

∂u

∂t
= Du∆u− χ∇(u∇v) + f(u) in D × (0, T ),

∂v

∂t
= Dv∆v + g(u, v) in D × (0, T ).

(2.16)

Here we see we have used the same homogeneous Neumann boundary and initial conditions
as in (2.2).
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Where χ∇(u∇v): is the chemotactic term with u moving towards high concentrations
of v. χ is commonly referred to as the chemotactic sensitivity. f(u) this is responsible
for cell kinetics, We specify that the cell kinetics depend only on the cell density u – this
is because the chemical does not effect cell proliferation, only cell motility. This only
works when considering pattern formation many models of chemotaxis cell proliferation is
controlled by the chemical e.g. wound healing, immune response. g(u, v) is the chemoat-
tractant kinetics that depend on both u and v.

We also assume that we have a positive spatially homogenous steady state (us, vs) such
that f(us) = g(us, vs) = 0.

2.9.2 Perturbed Chemotaxis System

We now add a deterministic forcing.

∂u

∂t
= Du∆u− χ∇(u∇v) + f(u) +D1R1(u)ζ1 in D × (0, T ),

∂v

∂t
= Dv∆v + g(u, v) +D2R2(u, v)ζ2 in D × (0, T ),

(2.17)

please refer to (2.7) and (2.8) for descriptions of the forcing terms in the new equation, we
also use the same initial and boundary conditions as in (2.2).

2.9.3 Stochastic Chemotaxis System

We now add a stochastic counterpart (2.12).

du = [Du∆u− χ∇(u∇v) + f(u)]dt+ σ1(u, v)dW (t) in D × (0, T ),

dv = [Dv∆v + g(u, v)]dt+ σ2(u, v)dW (t) in D × (0, T ),
(2.18)

where σ1, σ2 are the intensity of the noise. The boundary and initial conditions are the
same as those specified in (2.2)

We will now detail a specific model of chemotaxis that we shall analyse. Before we go
into this we shall provide a biological background to motivate the problem

2.9.4 lifecycle of Dictyostelium discoideum (Dd)

Cellular slime molds, such as Dictyostelium discoideum (Dd), are soil based microorgan-
isms with a fascinating life cycle. In their natural environment they play a crucial role
in breaking down decaying material, however it is their ability to cooperate that has long
fascinated scientists [28] .

In an abundant food supply Dd function as individual “amoeboid” cells, consuming the
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available food, undergoing cellular division and the population expands. However, as the
food becomes exhausted, the cells start to cooperate and accumulate to form an aggrega-
tion mound composed of approximately 100000 cells. Within this mound, cells differentiate
into two principal cell types: stalk and spore cells. The mound evolves into a multicellular
slug which migrates to a suitable location until assembling to form a fruiting body. The
stalk cells sacrifice themselves by forming a long stalk and protective casing that contains
the spore cells. The spore cells remain dormant until either the wind or an animal trans-
plants them to a more favourable location [29].

The lifecycle of Dd has become an important model system for studying how cells are
capable of communicating and behaving as a collective system. In this section we shall
address by modelling the important first step of this process: namely, how the initially
individual cells are capable of assembling to form the aggregation mound.

There are some biological facts that these cells have to abide by which will impact the
creation of our model

1. As cells begin to starve, they start to produce and secrete a chemical called cAMP.

2. cAMP is a chemoattractant for the Dictyostelium cells.

3. cAMP is degraded by specific enzymes (called proteolytic enzymes).

Deterministic Dd

Considering u(x, t) the density of the Dictyostelium cells and v(x, t) as the concentration
of the chemical chemoattractant (cAMP). We specify the kinetic terms stated which were
not specified in the general model (2.16)

f(u) = ru(1− u),

g(u, v) = au− bv.
(2.19)

ru(1 − u) models the logistic growth of Dictyostelium cells, with a growth rate r, au de-
scribes the production of cAMP by Dictyostelium cells at a rate a, and bv models the
degradation of cAMP by proteolytic enzymes at a rate b.

Note cAMP does not effect cell proliferation, only cell motility.

For all of these systems such as (2.1) and (2.12) full proofs of well posedness have been
investigated in [37, 38, 39], see appendix C for the main Theorems. However moving
forward it is assumed that all systems investigated have Existence and uniqueness, Exis-
tence for all times, Continuous dependency on the initial conditions and due to us dealing
with biological systems we place two extra conditions on them Solution is non-negative for
non-negative initial data and Solution is bounded for all bounded initial data.
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Chapter 3

Turing and Hopf bifurcation

Pattern formation can be summarised by a Turing bifurcation, which causes the spatially
homogeneous steady state to move from stable to unstable. However the system can go to
a globally oscillating homogeneous state with a dominant wave number k = 0, this leads
to patterns in time this is characterised by a Hopf Bifurcation. If both are satisfied we get
patterns in both time and space. In this chapter we shall derive the conditions needed to
induce such bifurcations in deterministic and perturbed reaction diffusion systems.

3.1 Deterministic setting

In order to establish under what conditions (2.1) can model pattern formation we need to
determine the conditions for which the spatially homogeneous steady state is

1. stable to a spatially homogeneous perturbation,

2. unstable to an inhomogeneous perturbation.

These conditions are given the name “Diffusion-Driven Instability (DDI)” or a “Turing
instability” after Alan Turing [17], the first person to propose this mechanism for pattern
formation. The expression “Diffusion–Driven Instability” refers to the fact that it is the
presence of the diffusion terms which allows patterns to develop – without these terms the
spatially homogeneous steady state is stable.

To derive these conditions analytically first we linearise (2.1) around the spatially ho-
mogeneous steady state (us, vs). We define

U(x, t) = u(x, t)− us,
V (x, t) = v(x, t)− vs.

(3.1)

13



Subbing into the RDS (2.1) and retaining only the linear order terms we get the following
linearised system.

∂U

∂t
= Du∆U + fuU + fvV,

∂V

∂t
= Dv∆V + guU + gvV,

(3.2)

where fu = ∂f
∂u
|(us,vs), fv = ∂f

∂v
|(us,vs), gu = ∂g

∂u
|(us,vs), gv = ∂g

∂v
|(us,vs), are the derivatives of the

kinetic functions evaluated at the steady states.

We look for solutions of the form

U(x, t) = Ū(t)eikx,

V (x, t) = V̄ (t)eikx,
(3.3)

Where eikx = cos(kx) + isin(kx).

This implies that we expect any spatial patterns to develop to be periodic in space with
wavelength 2π/k. k is referred to as the wavenumber.
Subbing (3.3) into the linearised system (3.2) to obtain

d

dt

[
Ū
V̄

]
= A

[
Ū
V̄

]
, where A =

[
fu −Duk

2 fv
gu gv −Dvk

2

]
(3.4)

We can see easily that

Tr(A) = (fu + gv)− (Du +Dv)k
2, (3.5)

Det(A) = δ(k2) = DuDvk
4 − (Dugv +Dvfu)k

2 + fugv − fvgu. (3.6)

Finding the characteristic equation of our stability matrix A

λ2 − Tr(A)λ+ δ(k2) = 0.

From this we can identify the eigenvalues of our stability matrix as

λ =
1

2
(Tr(A)±

√
Tr2(A)− 4δ(k2). (3.7)

Given 2 eigenvalues λ1, λ2 from stability analysis we know that a steady state is stable if

Re(λ1), Re(λ2) < 0,

looking at the form of our eigenvalues we can say that our steady state is stable if and only
if

Tr(A) < 0 & Det(A) > 0.

Conversely, we can say that a steady state is unstable if

Re(λ1) > 0 or Re(λ2) > 0,
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once again using the form of our eigenvalues we can say a steady state is unstable if and
only if

Tr(A) > 0 or Det(A) < 0

Looking back at what conditions were required for our steady state we have that it is

1. Stable to a homogeneous perturbation ⇐⇒ Steady state is stable when k = 0 ⇐⇒
Tr(A) < 0 & Det(A)>0, when k = 0

2. Unstable to an inhomogeneous perturbation ⇐⇒ Steady state is unstable, when
k >0 ⇐⇒ Tr(A) > 0 or Det(A)<0, when k > 0

Hence, using the trace and determinant of the stability matrix A defined above, we can
now start to see the first conditions needed for DDI.

1. Stable to a homogeneous perturbation requires

Tr(A) < 0 for k = 0 ⇐⇒ fu + gv < 0 (DDI 1)

and
Det(A) > 0 for k = 0 ⇐⇒ fugv − fvgu > 0 (DDI 2)

.

2. Unstable to an inhomogeneous perturbation requires either Tr(A) > 0 or Det(A) < 0
for at least one positive value of k2.

We know that Tr(A) = (fu + gv) − (Du + Dv)k
2 however from DDI 1 this implies that

Tr(A) < 0, ∀k. Hence instability can only occur when DetA < 0.

Det(A) = δ(k2) = DuDvk
4 − (Dugv + Dvfu)k

2 + fugv − fvgu is a quadratic in k2 with
a minimum value δmin when k2 = k2

min.

Solving δ(k2) for its roots and taking the positive one we find that

k2
min =

Dugv +Dvfu
2DuDv

,

δmin = (fugv − fvgu)−
(Dugv +Dvfu)

2

4DuDv

.

Thus, we derive the final two conditions, Det(A) < 0 for some k2 > 0 if and only if the
following are satisfied

k2
min > 0 ⇐⇒ Dugv +Dvfu > 0 (DDI3)

and
δmin < 0 ⇐⇒ (Dugv +Dvfu)

2 > 4DuDv(fugv − fvgu) (DDI4)
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So the 4 equations

Tr(A) < 0 for k = 0 ⇐⇒ fu + gv < 0 (DDI1)

Det(A) > 0 for k = 0 ⇐⇒ fugv − fvgu > 0 (DDI2)

k2
min > 0 ⇐⇒ Dugv +Dvfu > 0 (DDI3)

δmin < 0 ⇐⇒ (Dugv +Dvfu)
2 > 4DuDv(fugv − fvgu) (DDI4)

(3.8)

complete our set of conditions for Diffusion-Driven Instability.

We shall also look for conditions for which a Hopf bifurcation may occur in a system.
Although a Hopf bifurcation can occur at any wave number we consider the case where
the leading wave number is k = 0. This will allow for simpler analysis. This then makes

Tr(A) = (fu + gv),

Det(A) = δ(0) = (fugv − fvgu).
(3.9)

Considering (2.1) we suppose that it has a spatially homogeneous fixed point e.g (u, v) =
(us, vs). Let the eigenvalues of the linearised system (3.2) be given by λ1,2 = α(µ)± iβ(µ).
Suppose further that further for a certain value of µ the following conditions are satisfied:

1. β(µ0) 6= 0

2. α(µ0) = 0

3. dα
dµ

(µ0) 6= 0 i.e The transversality condition: the eigenvalues cross the imaginary axis
with non-zero speed

The original paper can be found in [35] with the translation to english in [36]. Compar-
ing these conditions to our eigenvalues (3.7,3.9) we can derive 3 conditions that must be
staisfied in order for a Hopf bifurcation to occur

1. δ(0) = (fugv − fvgu) > 0

2. Re(λ) = (fu + gv) = 0

3. d(Re(λ)
dµ

(µ0) 6= 0 i.e transversality condition: the eigenvalues cross the imaginary axis
with non-zero speed

Given µ as a bifurcation parameter of the system (2.1).

3.2 Perturbed Setting

In this section we now derive analytical conditions for which patterns can occur when our
system is perturbed by a deterministic forcing. From system (2.6) the extra terms in the
system are defined by (2.7) and (2.8). Here we are closely following the work of [29].
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To examine the stability of the system and derive the new Turing conditions for pattern
formation we consider a perturbation around the uniform steady state (us, vs)

U(x, t) = u(x, t)− us,
V (x, t) = v(x, t)− vs.

(3.10)

Plugging into our system (2.6) we then keep only linear order terms we derive the linearised
system for our perturbed system

∂U

∂t
= Du∆U +D11U + fuU + fvV,

∂V

∂t
= Du∆V +D21V + guU + gvV.

(3.11)

Compared to (3.2), we have two additional terms D11U,D21V .

We linearise around the steady state

U(t) = u− us =⇒ u = U + us.

Subbing into the noise term we get

D1(U + us − us)
1√
2πσ

e−
(U+us−us)2

2σ2 =
D1√
2πσ

Ue−
U2

2σ2 ,

Taylor expanding this to order O(U2) we get the additional forcing term

D1√
2πσ

U.

The same derivation applies for the noise term in the v equation.

Hence we define the following forcing terms that appear in the linearised system (3.11)

D11 =
D1√
2πσ

,

D21 =
D2√
2πσ

.

(3.12)

As in the deterministic setting we assume solutions to P =

[
U(t)
V (t)

]
have the form

P =

[
Ū(t)
V̄ (t)

]
eikx,
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plugging the solutions into the system (3.11) we obtain the following

Pt = SP, Where S =

[
A11 − k2Du A12

A21 A22 − k2Dv

]
(3.13)

where A11 = fu +D11,A12 = fv,A21 = gu,A22 = gv +D21.

We shall first derive the conditions for a Hopf bifurcation.

The characteristic equation from stability matrix S gives us the eigenvalues, which note
have the same form as the deterministic setting (3.7),

λ =
1

2
(Tr(S)±

√
Tr2(S)− 4δ(k2), (3.14)

where we have that, expanding the forms fully

Tr(S) = fu + gv +D11 +D21 − k2(Du +Dv), (3.15)

δ(k2) = Det(S) =fugv + fuD21 +D11gv +D11D21 − fvgu − (fuDv +D11Dv + gvDu +DuD21)k2

+DuDvk
4.

(3.16)
To derive the new Hopf conditions we based on bifurcation theory and what we derived in
section one we see the following conditions have to be satisfied given an arbitrary bifurcation
parameter µ = µ0.

1. δ(0) = fugv + fuD21 +D11gv +D11D21 − fvgu > 0,

2. Re(λ) = fu + gv +D11 +D21 = 0,

3. d(Re(λ))
dµ

(µ0) 6= 0.

Comparing these conditions to the deterministic setting we see that condition 3 is identical
as D11, D21 are constants for a given σ. What we do see though is that condition 1 & 2
have the extra noise terms involved in them. It may be possible for us to achieve a Hopf
bifurcation for a greater range of parameter values.

Now moving onto the new conditions required for a Turing bifurcation.

For point one we derive the first two conditions from our stability matrix S for k=0.

fu + gv +D11 +D21 < 0 ⇐⇒ Tr(S) < 0 (PDDI1)

and

fugv + fuD21 +D11gv +D11D21 − fvgu > 0 ⇐⇒ Det(S) > 0 (PDDI2)
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For point 2 we know Tr(S) < 0 ∀k so we need Det(S)> 0 looking for a positive k2
min we

solve δ(k2) (3.17) we then find that

k2
min =

fuDv +D11Dv + gvDu +D21Du

2DuDv

,

and

δmin = 4DuDv(fugv + fuD21 +D11gv +D11D21 − fvgu)− (fuDv +D11Dv + gvDu +D21Du)
2.

Hence we arrive at our final two conditions

(fuDv +D11Dv + gvDu +D21Du) > 0 ⇐⇒ k2
min > 0 (PDDI3)

and

(fuDv +D11Dv + gvDu +D21Du)
2 > 4DuDv(fugv + fuD21 +D11gv +D11D21 − fvgu)
⇐⇒ δmin < 0 (PDDI4)

So our complete set of equations then becomes

fu + gv +D11 +D21 < 0 ⇐⇒ Tr(S) < 0 (PDDI1)

fugv + fuD21 +D11gv +D11D21 − fvgu > 0 ⇐⇒ Det(S) > 0 (PDDI2)

(fuDv +D11Dv + gvDu +D21Du) > 0 ⇐⇒ k2
min > 0 (PDDI3)

(fuDv +D11Dv + gvDu +D21Du)
2 > 4DuDv(fugv + fuD21 +D11gv +D11D21 − fvgu)

⇐⇒ δmin < 0 (PDDI4)
(3.17)

PDDI 1-4 then make up the conditions needed to induce patterns for stochastic reaction
diffusion systems. Once again I expect that these conditions will allow for a greater range
of parameter values to be used in which these conditions will be satisfied and patterning
will occur.

One important point to take from this chapter is that either one of the two bifurcations
can occur at anyone one time this is due to the trace of our stability matrix always been
less than zero for a Turing bifurcation where as when looking for a Hopf bifurcation we
require the trace of our stability matrix to be equal to zero.

3.3 Examples of biological systems

3.3.1 FitzHugh-Nagumo model

In this section we shall use the conditions (3.8) and (3.17) to investigate the FHN and the
PFHN to investigate what constraints need to be on the parameters in the model in order
for patterns to appear.
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Deterministic FHN

Recalling the system (2.3) we look for a spatially homogenous steady state we set

(a− u)(u− 1)u− v = 0, e(bu− v) = 0

solving we these equations we find our steady state to be

(us, vs) = (
1 + a+

√
(1− a)2 − 4b

2
, bus).

Following the notation described in equation (3.2) we find that

fu = 2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2
, fv = −1, gu = be, gv = −e. (3.18)

Then using the DDI conditions we derived (3.7) we can see what constraints will be placed
on parameters in order for patterns to emerge

1. fu + gv < 0 =⇒ (2a+ 3b− (a+ 1)
1+a+
√

(1−a)2−4b

2
) < e

Gives us a condition for the size needed on e.

2. fugv − fvgu > 0 =⇒ b > (2a+ 3b− (a+ 1)
1+a+
√

(1−a)2−4b

2
).

Using condition 1 we can gain the inequality b > e.

3. Dvfu +Dugv > 0 =⇒ Dv
Du

> e

(2a+3b−(a+1)
1+a+

√
(1−a)2−4b
2

)
.

As we know e is a positive parameter we can conclude from this that fu will also be
positive in order to have a positive diffusion ratio.

4. (Dugv +Dvfu)
2 > 4DuDv(fugv − fvgu)

We can solve this to show that dc = Dv
Du

satisfys

dc =
2fugv − 4fvgu +

√
[2fugv − 4fvgu]2 − 4f 2

ug
2
v

2f 2
u

(3.19)

Plugging in the expressions for fu, fv, gu, gv

dc =
−2e(2a+ 3b− (1 + a)

1+a+
√

(1−a)2−4b

2
) + 4eb+

√
A

2(2a+ 3b− (1 + a)
1+a+
√

(1−a)2−4b

2
)2

WhereA = [−2e(2a+3b−(1+a)
1+a+
√

(1−a)2−4b

2
)+4eb]2−4(2a+3b−(1+a)

1+a+
√

(1−a)2−4b

2
)2e2
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Note solving condition 4 for Dv/Du provides us with the critical diffusion bifurcation point
dc where when Dv/Du > dc the steady state loses its stability and patterns can begin to
form.

Following the general formulation from above we know the eigenvalues tale the form of
(3.7). Here we are checking the conditions for a Hopf bifurcation hence the leading wave
number here is k=0. So the trace and determinant have are (3.9) From the conditions we
have derived for a Hopf bifurcation we have

1. fugv − fvgu > 0 this condition holds if we assume the condition 2 for a Turing
bifurcation hold

2. fu + gv = 0 =⇒ e = (2a+ 3b− (a+ 1)
1+a+
√

(1−a)2−4b

2
)

3. Re(λ) is not a constant, see the real part of the eigenvalue is

α(e) = −e+ 2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2

Hence, we see α′(e) = −1 6= 0.

Hence if all these conditions for a Hopf bifurcation hold we can say that at

e = 2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2
,

we have a Hopf bifurcation point. When e is greater than this value, we expect oscillations
in time to occur.

Perturbed FHN

For system (2.9) the conditions for a Turing bifurcation are given by

1. fu + gv +D11 +D21 < 0 =⇒ (2a+ 3b− (a+ 1)
1+a+
√

(1−a)2−4b

2
+ (D11 +D21)) < e

2. fugv + fuD21 +D11gv +D11D21 − fvgu > 0 =⇒

−e(2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2
)

−be+D21(2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2
)−D11e+D11D21 > 0

3. (fuDv +D11Dv + gvDu +D21Du) > 0 =⇒

Dv/Du >
e+D21

(2a+ 3b− (a+ 1)
1+a+
√

(1−a)2−4b

2
) +D11
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4. (fuDv+D11Dv+gvDu+D21Du)
2 > 4DuDv(fugv+fuD21+D11gv+D11D21−fvgu) =⇒

[DvDu −Du
e+D21

(2a+ 3b− (a+ 1)
1+a+
√

(1−a)2−4b

2
) +D11

]2 >

4DuDv(−e(2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2
))

be+D21(2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2
)−D11e+D11D21

Solving condition 4 first we define

s = Du
e+D21

(2a+ 3b− (a+ 1)
1+a+
√

(1−a)2−4b

2
) +D11

then define

p = be+D21(2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2
)−D11e+D11D21

Plugging into condition 4 we are left with the the following quadratic in dc to solve

d2
c + dc(2s− 4p) + s2 = 0,

recall dc is our diffusion ratio.

We can solve to find the critical diffusion bifurcation point

dc =
4p− 2s+

√
[2s− 4p]2 − 4s2

2
.

Note clearly that this critical diffusion point is much more complicated than the bifurca-
tion point derived for the DFHN due to the additional perturbation added in the system.
Comparing the 4 conditions of the DFHN and the PFHN we see that in the PFHN model
the conditions include additional forcing terms either adding or taking away from an ex-
pression. This means that there will be added constraints on parameters in order to induce
patterns. This means that the size of the parameter space will decrease in order to accom-
modate these extra constraints

Following the same steps as previous we reach the new conditions needed for a Hopf
bifurcation.

1. fugv + fuD21 +D11gv +D11D21 − fvgu > 0 =⇒

e(2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2
)

−be+D21(2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2
)−D11e+D11D21 > 0
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2. fu + gv +D11 +D21 = 0 =⇒

e = 2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2
+ (D11D21)

3. Note from the general theory of section 2 we noted that condtion 3 of a Hopf bifur-
cation will stay the same as in the deterministic setting as all that we have added on
is a constant so when we differentiate it makes no difference.

Given all these conditions hold we find that at

e = 2a+ 3b− (a+ 1)
1 + a+

√
(1− a)2 − 4b

2
+ (D11D21),

we have a Hopf bifurcation point. Comparing the Hopf bifurcation points for the FHN and
the PFHN we notice they are nearly identical points however when the perturbation we
notice we have the new additional forcing terms present. This implies that in the PFHN
model we would have to increase the size of e in order to accommodate for the forcing
terms. Showing that also in system (2.3) the Hopf bifurcation will occur sooner than in
the perturbed setting.

3.3.2 Brusselator model

In this section we shall use the conditions (3.8) and (3.17) to investigate the Bru and the
PBru to investigate what constraints need to be on the parameters in the model in order
for patterns to appear.

Deterministic Bru

Recalling the system (2.4) we look for a spatially homogenous steady state we set

a− (b+ 1)u+ u2v = 0, bu− u2v = 0

solving we these equations we find our steady state to be

(us, vs) = (a, b/a).

Following the notation described in equation (3.2) we find that

fu = b− 1, fv = a2, gu = −b, gv = −a2. (3.20)

Then using the DDI conditions we derived (3.8) we can see what conditions have to be
satisfied in order for patterns to occur in the Brusselator model

1. fu + gv < 0 =⇒
b < 1 + a2

We can see that this condition places a constraint on the size of our parameter b
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2. fugv − fvgu > 0 =⇒
a2 > 0

3. Dvfu +Dugv > 0 =⇒
Dv

Du

>
a2

b− 1

. From this condition we can see that b > 1 to ensure a positive diffusion ratio.

4. (Dugv +Dvfu)
2 > 4DuDv(fugv − fvgu) =⇒

(Dv(b− 1)−Dua
2)2 > 4DvDua

2

We can solve condition 4 using (3.19) to find the specific point where the steady state will
become unstable and we will see patterns begin to appear

dc =
2a2(b− 1) + 4a2 +

√
[4a2 − 2a2(b− 1)]2 − 4a4(b− 1)2

2(b− 1)2
, where dc = Dv/Du

When running numerical simulations we will be able to compare the theoretical results
and see if diffusion ratios below this value do not generate patterns. However this result
provides us a theoretical value for at which diffusion ratio patterns are induced

Following the general formulation from above we know the eigenvalues tale the form of
(3.7). Here we are checking the conditions for a Hopf bifurcation. So the trace and deter-
minant are (3.9) From the conditions we have derived for a Hopf bifurcation we have

1. fugv − fvgu > 0 =⇒ a2 > 0

Satisfied from Turing and the fact all parameters in the model are positive

2. fu + gv = 0 =⇒ b = 1 + a2

3. For this particular model we see the real part of the eigenvalue is

α(b) = b− 1− a2

we see α′(b) = 1 6= 0

‘ Hence given all conditions are satisfied showing that at

b = 1 + a2,

we have a Hopf bifurcation and when b is greater than this value is when we expect
oscillations in time to occur.
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Perturbed Bru

Considering (2.10) the system. Now looking at the conditions for a Turing bifurcation are
given by

1. fu + gv +D11 +D21 < 0 =⇒

b < 1 + a2 − (D11 +D21)

2. fugv + fuD21 +D11gv +D11D21 − fvgu > 0 =⇒

b > D11a
2 − a2 −D21 −D11D21

3. (fuDv +D11Dv + gvDu +D21Du) > 0 =⇒

Dv

Du

>
a2 −D21

b− 1−D21

4. (fuDv+D11Dv+gvDu+D21Du)
2 > 4DuDv(fugv+fuD21+D11gv+D11D21−fvgu) =⇒

(
Dv −

Dua
2 +Dv2

b− 1−Dv2

)2
> 4DuDv(b−D11a

2 + a2 +D21 +D11D21)

We can see with the extra terms we now have more constraints on our parameters, this
does mean that we are likely to end up with a larger parameter space where patterns
can exist depending on the size of the perturbation terms. In the deterministic setting
condition two was automatically satisfied where as now it provides a constraint for the
parameter b. condition b now requires b + D21 > 1 and that a2 > D21 which will ensure
the diffusion ratio is positive. We also see the effect of the perturbation in condition 1, in
the deterministic setting b < 1 + a2 where as here b < 1 + a2 − (D11 + D21) due to this
subtraction of the perturbation terms we could assume that the value of b would have to
reduce in order to induce patterns, hence we can imply a changing parameter region as a
result of an added perturbation.

Solving condition 4 first we define

s =
a2 +D21

b− 1−D21

,

then define
p = (b−D11a

2 + a2 +D21 +D11D21),

so in order to solve d2
c + dc(2s − 4p) + s2 = 0 recall d is our diffusion ratio. We can

solve to find that the critical diffusion bifurcation point is once again when we numerically
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simulate these models it will be interesting to see how the parameter spaces change and to
see whether the size of the critical diffusion ratio has gone up or down

dc =
4p− 2t+

√
[2t− 4p]2 − 4t2 − 4a2

2
.

Comparing the two sets of conditions we have derived for the PBru and the Bru one obvious
difference is that condition 2 is no longer satisfied automatically in the PBru system this
is itself demonstrates how in the DBru we could have a parameter spaces that satisfies the
conditions and induces patterns however in the PBru this specific parameter space would
not be sufficient. Another clear difference is the condition 3 was satisfied by requiring b > 1
however in the PBru we now have conditions on both a and b which ensure the diffusion
ratio is positive. This shows the effects of the extra perturbation when added to the system.

Following the same steps as above we reach the new conditons needed for a Hopf bi-
furcation.

1. fugv + fuD21 +D11gv +D11D21 − fvgu > 0 =⇒

b > D11a
2 − a2 −D21 −D11D21.

Which is satisfied given the conditions on the Turing Patterns

2. fu + gv +D11 +D21 = 0 =⇒

b = 1 + a2 − (D11 +D21),

recall can’t happen if condition 1 of DDI holds.

3. Note from the general theory of section 2 we noted that condtion 3 of a Hopf bifur-
cation will stay the same as in the deterministic setting as all that we have added on
is a constant so when we differentiate it makes no difference.

Hence,
b = 1 + a2 − (D11 +D21),

is a Hopf bifurcation point. Once again comparing the two Hopf bifurcation points that
we have derived for the Bru and PBru respectively we see that the PBru has additional
terms taking away from the parameter b this implies that if the conditions hold to induce
a Hopf bifurcation the size of the parameter b would have to be larger in the PBru than
in the Bru.

3.3.3 Schnakenberg model

In this section we shall use the conditions (3.8) and (3.18) to investigate the Sch and the
PSch to investigate what constraints need to be on the parameters in the model in order
for patterns to appear.
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Deterministic Sch

Recalling the system (2.5) we look for a spatially homogenous steady state we set

a− u+ u2v = 0 b− u2v = 0

Solving we these equations we find our steady state to be

(us, vs) = (a+ b,
b

(a+ b)2
).

Following the notation described in equation (3.2) we find that

fu =
b− a
a+ b

, fv = (a+ b)2, gu =
−2b

a+ b
, gv = −(a+ b)2. (3.21)

Then using the DDI conditions we derived (3.8) we can see what conditions have to be
satisfied in order for patterns to occur in the Schnakenberg model.

To make the analysis easier we make the transformation and set

b− a = α, a+ b = β

which means

a =
β − α

2
, b =

β + α

2

Looking at the conditions for a Turing bifurcation

1. fu + gv < 0 =⇒
b− a < (a+ b)3 =⇒ α < β3

2. fugv − fvgu > 0 =⇒
(a+ b)2 > 0 =⇒ β2 > 0

3. Dvfu +Dugv > 0 =⇒
Dv

Du

>
(a+ b)3

b− a
=⇒ Dv

Du

>
β3

α

We see that we require b > a to ensure a positive diffusion coefficient.

4. (Dugv +Dvfu)
2 > 4DuDV (fugv − fvgu) =⇒

(Dv(b− a)−Du(a+ b)3)2 > 4DuDv(a+ b)4 =⇒ (Dvα−Duβ
3)2 > 4DuDvβ

4

Solving condition 4 using (3.19) we are able to find the bifurcation point at which the
steady state becomes unstable we find that

dc =
2αβ3 + 4β4 +

√
[2αβ + 4β4]2 − 4α2β6

2α2
.
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When plugging in parameter values which ever value is positive we take to be the critical
bifurcation point at which point any value greater than this we would expect patterns to
appear.

Following the general formulation from above we know the eigenvalues tale the form of (3.8).
Here we are checking the conditions for a Hopf bifurcation hence the leading wavenumber
here is k=0. So the trace and determinant have are (3.9) From the conditions wehave
derived for a Hopf bifurcation we have

1. fugv − fvgu > 0 =⇒ (a+ b)2 > 0 =⇒ β2 > 0. This is satisfied automatically as all
parameters are positive.

2. fu + gv = 0 =⇒ b− a = (a+ b)3 =⇒ α = β3.

3. Here we see the real part of our eigenvalue is α(α) = α
β
− β2 when we differentiate

this we get α′ = 1
β

which we see is non zero

Hence given all conditions are satisfied showing that at α = β3 we have a Hopf bifurcation
and when α is greater than this value is when we expect oscillations in time to occur.

Perturbed version

For system (2.11) the conditions for a Turing bifurcation are given by

1. fu + gv +D11 +D21 < 0 =⇒

(a+ b)3 > (a+ b)(D11 +D21) + (b− a) =⇒ β3 > β(D11 +D21) + α

2. fugv + fuD21 +D11gv +D11D21 − fvgu > 0 =⇒

(a+ b)3 <
D21(b− a) +D11D21(a+ b)

D11 − 1
=⇒ β3 <

D21α +D11D21β

D11 − 1

3. (fuD3 +D11Dv + gvDu +D21Du) > 0 =⇒

Dv

Du

>
(a+ b)3

(b− a) +D11 − 1
=⇒ Dv

Du

>
β3

α +D11β

4. (fuDv+D11Dv+gvDu+D21Du)
2 > 4DuDv(fugv+fuD21+D11gv+D11D21−fvgu) =⇒

[Dv −
Duβ

3

α +D11β
]2 > 4DuDv(β

3 +D21α−D11(β + α) +D11D21)

28



Solving condition 4 first we define

t =
β3

α +D11β
,

then define
p = (β3 +D21α−D11(β + α) +D11D21),

so in order to solve d2 + d(2s − 4t) + s2 = 0 recall d is our diffusion ratio. We can
solve to find that the critical diffusion bifurcation point is once again when we numerically
simulate these models it will be interesting to see how the parameter spaces change and to
see whether the size of the critical diffusion ratio has gone up or down

dc =
4p− 2s+

√
[2s− 4p]2 − 4s2

2
.

Once again we see when we compare the conditions for the Sch and the PSch like in the Bru
and PBru system condition 2 that was automatically satisfied before now has a condition
placed on it. As is the same for condition 3 which ensures a positive diffusion parameter.
In this case I feel the conclusions are the same that with these extra constraints we can
expect a larger parameter region in order to accomadate for the extra perturbation terms.

Now looking at the conditions needed to get a Hopf bifurcation

1. fugv + fuD21 +D11gv +D11D21 − fvgu > 0 =⇒

β3 <
D21αD11D21β

D11 − 1
,

2. fu + gv +D11 +D21 = 0 =⇒

β3 = β(D11 +D21) + α,

3. Note from the general theory of section 2 we noted that condtion 3 of a Hopf bifur-
cation will stay the same as in the deterministic setting as all that we have added on
is a constant so when we differentiate it makes no difference.

Hence given all the conditions of a Hopf bifurcation are satisfied we can say that at

β3 − β(D11 +D21) = α,

we have a Hopf bifurcation. Comparing our two Hopf bifurcation points from the conditions
that we have derived we see that actually we get some interesting results where as in
previous models we expect the bifurcation parameter to be larger when the system is
perturbed we see in the PSch that the Hopf bifurcation point gains additional terms from
the perturbation meaning that we would have to decrease the parameter or keep it the
same size in order would the Hopf bifurcation to be induced.
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3.4 Chemotaxis

In this section we shall look at the systems of chemotaxis that we intriduced in Chapter
2. First we shall derive analytical conditions for which we expect patterns to occur for
the general systems (2.16) and (2.17). Then we shall apply these conditions for specific
examples.

3.4.1 Deterministic Chemotactic Patterning

To analyse the stability of spatially homogeneous steady states for chemotaxis system
(2.16) we linearise about the steady state

U = u− us, V = v − vs.

To obtain
∂U

∂t
= Du∆U − χus∆v + fuU,

∂v

∂t
= Dv∆v + guU + gvV

(3.22)

With the same homogeneous Neumann initial and boundary conditions (2.2)

Then as before we are looking for solutions of the form given in (3.1), we obtain

d

dt

[
Ū
V̄

]
A

[
Ū
V̄

]
, where A =

[
fu −Duk

2 χusk
2

gu gv −Dvk
2

]
(3.23)

Comparing the stability matrix to the one derived in (3.4) we see that the A12 entry has
changed due to the general model having no fv and that we will get an extra to the k2

terms which will play a part when looking at unstable perturbations.

The characteristic equation is given by

λ2 − Tr(A)λ+ δ(k2) = 0.

The eigenvalues are given by

λ =
1

2
(Tr(A)±

√
Tr2(A)− 4δ(k2) (3.24)

where

Tr(A) = (fu + gv)− (Du +Dv)k
2, (3.25)

Det(A) = δ(k2) = DuDvk
4 − (Dugv +Dvfu + χusgu)k

2 + fugv. (3.26)

30



Recall when looking for the Hopf Bifurcation we choose the leading wavenumber of the
solution to be k=0. Hence this then makes

Tr(A) = (fu + gv), (3.27)

Det(A) = δ(0) = fugv. (3.28)

We note that in the chemotactic setting the determinant is reduced massively which will
help us when determining conditions for which patterns can occur.

For the steady state (us, vs) to be stable to a spatially homogeneous perturbation we
require

Tr(A) < 0, k = 0 ⇐⇒ fu + gv < 0 (C1)

&

Det(A) > 0, k = 0 ⇐⇒ fugv > 0 (C2)

Now for condition 2, Tr(A) can’t be greater than zero as from (C1) as Tr(A) = (fu+gv)−
(Du +Dv)k

2 < 0 ∀k.

Thus can obtain patterning if there are some positive values of k2 for which δ(k2) =
Det(A) < 0. Solving δ(k2) to find the smallest positive root k2

min and plugging that value
in to find δmin, we get

k2
min =

Dugv +Dvfu + χusgu
2DuDv

δmin = fugv −
(Dugv +Dvfu + χusgu)

2

4DuDv

(3.29)

Thus δ(k2) < 0 for some k2 > 0 ⇐⇒

k2
min ⇐⇒ Dugv +Dvfu + χusgu > 0 (C3)

&

δmin < 0 ⇐⇒ (Dugv +Dvfu + χusgu)
2 > 4DuDvfugv (C4)

Putting all the conditions together we get

Tr(A) < 0, k = 0 ⇐⇒ fu + gv < 0 (C1)

Det(A) > 0, k = 0 ⇐⇒ fugv > 0(C2)

k2
min > 0 ⇐⇒ Dugv +Dvfu + χusgu > 0 (C3)

δmin < 0 ⇐⇒ (Dugv +Dvfu + χusgu)
2 > 4DuDvfugv (C4)

(3.30)
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(3.30) form our complete set of conditions which have to be satisfied for chemotactic driven
instability. We will be able to find a point at which the chemotactic sensitivity χ∗ if χ > χ∗
then the steady state will become unstable and we would expect patterns to appear. As
you can see from the conditions in chemotaxis system the chemotactic sensitivity coefficient
play important role and here the instability is driven by the interplay between diffusion
and chemotaxis.

Conditions for the Hopf bifurcation are as follows:

β(µ0) 6= 0 =⇒ fugv > 0

α(µ0) = 0 =⇒ fu + gv = 0

d(fu + gv)

dµ
(µ0) 6= 0

(3.31)

where µ is an arbitary bifurcation parameter of a given system.

3.4.2 Perturbed Chemotactic Patterning

Linearising the system as in (2.17)

∂U

∂t
= Du∆u− χus∆v + fuU +D11U,

∂V

∂t
= Dv∆V + guU + gvV +D21V

(3.32)

Considering solutions of (3.32) of the form (3.3) we obtain

d

dt

[
Ū
V̄

]
= A

[
Ū
V̄

]
, where A =

[
fu +D11 −Duk

2 χusk
2

gu gv +D21 −Dvk
2

]
(3.33)

Note we have the exactly same stability matrix as in (3.23) just with the extra forcing
terms which we described in (3.12).

The eigenvalues of matrix A in (3.33) are given by (3.24) with

Tr(A) = (fu + gv +D11 +D21)− (Du +Dv)k
2,

Det(A) = δ(k2) = DuDvk
4 − (Dugv +Dvfu +D11Dv +DuD21 + χ

usgu)k
2 + fugv + fuD21 +D11gv +D11D21.

(3.34)

Going back to the conditions required on the steady state in order for patterns to appear,
we have

Tr(A) < 0, k = 0 ⇐⇒ (fu + gv +D11 +D21) < 0 (CS1)
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&

Det(A) > 0, k = 0 ⇐⇒ fugv + fuD21 +D11gv +D11D21 > 0 (CS2)

and δ(k2) = Det(A) < 0 for k2 > 0.

Solving δ(k2) to find the smallest positive root k2
min and plugging that value in to find

δmin, we get

k2
min =

Dugv +Dvfu +D11Dv +DuD21 + χusgu
2DuDv

δmin = fugv + fuD21+D11gv +D11D21 −
(Dugv +Dvfu +D11Dv +DuD21 + χusgu)

2

4DuDv

(3.35)
Thus δ(k2) < 0 for some k2 > 0 ⇐⇒

k2
min ⇐⇒ Dugv +Dvfu +D11Dv +DuD21 + χusgu > 0 (CS3)

&

δmin < 0 ⇐⇒ (Dugv +Dvfu +D11Dv +DuD21 + χusgu)
2 >

4DuDv(fugv + fuD21 +D11gv +D11D21) (CS4)

Hence we can form a complete set of conditions for which we expect chemotactic patterning
to occur
(CS1),(CS2),(CS3),(CS4) form our complete set of conditions which have to be satisfied
for pattern formation in the chemotaxis system (2.20)

Recall when looking for the Hopf Bifurcation the leading wavenumber of the solution
is k=0. Hence this then makes

Tr(A) = (fu + gv +D11 +D21),

Det(A) = P (0) = fugv + fuD21 +D11gv +D11D21.
(3.36)

The conditions are as follows

β(µ0) 6= 0 =⇒ fugv + fuD21 +D11gv +D11D21 > 0

α(µ0) = 0 =⇒ (fu + gv +D11 +D21) = 0

dα

dµ
(µ0) 6= 0 =⇒ d(fu + gv +D11 +D21)

dµ
(µ0) 6= 0

(3.37)

Note D11, D21 are additional constants that are present from the linerisation of the random
variable in the initial model equations, when we differentiate them they go to zero. Hence
if condition 3 is satisfied in the deterministic setting it will also be satisfied in the stochastic
setting for the noise specified in this setting.
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3.4.3 Deterministic (Dd)

Recalling system (2.19) we look for a non-trival steady state of the model we need to satisfy

f(us) ⇐⇒ rus(1− us) = 0 =⇒ us = 1.

We also need
g(us, vs) = 0 ⇐⇒ aus = bvs.

The non-trival steady state we find is

(us, vs) = (1, a/b).

Evaluating derivatives at the steady state as before we find

fu = −r, gu = a, gv = −b.

Now subbing into conditions (3.30) we get

1. fu + gv < 0 =⇒
−r − b < 0

We see that this is satisfied automatically, from the parameters been positive

2. fugv > 0 =⇒
rb > 0

We see this condition is also automatically satisfied.

3. Dvfu +Dugv + χusgu > 0 =⇒

χ >
1

a
(rDv + bDu)

This provides us a condition for for how big the chemotactic sensitivity has to be in
order for aggregation in the model to occur.

4. (Dvfu +Dugv + χusgu)
2 > 4DuDvfugv =⇒

(
χa

Du

− rd− b)2 > 4rdb, d =
Dv

Du

We can solve for the chemotactic sensitivity to get a new condition for how big χ has
to be.

χ >
Du

a
(rd+ b+ 2

√
rdb) where d =

Dv

Du

.
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From this we can see that given a value of χ > χ∗, where χ∗ = Du
a

(rd+ b+ 2
√
rdb) hence

any value greater than this we expect the steady state to become unstable and patterns will
begin to appear from this we can conclude χ∗ is our Turing bifurcation point. Provided
the chemotactic sensitivity, χ and rate of production of chemoattractant, a are sufficiently
strong, we can expect aggregation patterns to form.

Looking for a Hopf Bifurcation we can use the conditions (3.31)

1. fugv > 0 =⇒
rb > 0

. This is satisfied automatically due the parameters been positive.

2. fu + gv = 0 =⇒
r = −b

3. d(fu+gv)
dµ

(µ0) 6= 0 =⇒
d(−r − b)

dr
= −1 6= 0.

At r = −b we can define a Hopf bifurcation. We see that this is biologically not possible
since r, b > 0. Hence, it is not possible to have a Hopf bifurcation in the system.

3.4.4 Perturbed (Dd)

Recalling the system (2.20) along with the deterministic steady state of Dd. Now looking
at the conditions (CS1-CS4) for bifurcation.

1. (fu + gv +D11 +D21) < 0 =⇒

r + b > D21 +D41.

2. fugv + fuD21 +D11gv +D11D21 > 0 =⇒

rb− rD21 − bD11 +D11D21 > 0

.

3. Dugv +Dvfu +D11Dv +DuD21 + χusgu > 0 =⇒

χ >
1

a
(bDu + rDv −D11Dv −DuD21)

.
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4. (Dugv+Dvfu+D11Dv+DuD21+χusgu)
2 > 4DuDv(fugv+fuD21+D11gv+D11D21) =⇒

χ >
1

a
(bDu + rDv −D11Dv −DuD21 + 2DuDv

√
rb− rD21 − bD11 +D11D21)

From this we can see that given a value of χ > χ∗, where χ∗ = 1
a
(bDu + rDv −D11Dv −

DuD21 +2DuDv

√
rb− rD21 − bD11 +D11D21) hence any value greater than this we expect

the steady state to become unstable and patterns will begin to appear from this we can
conclude χ∗ is our Turing bifurcation point. However note that been in the perturba-
tion setting does mean that we have extra terms contributing to the constraints hence we
may find that for a given noise the bifurcation points value may either increase or decrease.

We can see that comparing CS1 to C1 to the deterministic case there is now a higher
lower bound on the value of r+b and this lower bound is controlled by the size of our noise
term. Also comparing CS2 to C2 before this condition was automatically satisfied now it
is not. It depends once again on the size of our perturbation terms.

We can investigate the Hopf bifurcation point using conditions (3.37)

1. fugv + fuD21 +D11gv +D11D21 > 0 =⇒

rb− rD21 − bD11 +D11D21 > 0

.

2. fu + gv +D11 +D21 = 0 =⇒

r = −b+D11 +D21

3. d(fu+gv+D11+D21)
dµ

(µ0) 6= 0 =⇒

d(−r − b+D11 +D21)

dr
= −1 6= 0.

We can see that all three conditions can be satisfied, hence at

r = −b+D11 +D21.

we have a Hopf bifurcation. Here we see that this point now has these additional forcing
terms included in the point hence we expect that in this setting the size of the parameter
r would have to increase in order to accommodate for the additional perturbation terms.
Hence it may now be possible to have a Hopf bifurcation in the system.

36



Chapter 4

Numerical Simulations

We will now simulate the models that we have analysed theoretically. We will begin by
giving an introduction to the scheme that will be used to simulate the reaction diffusion
and chemotaxis systems.

4.1 Numerical schemes

We shall first detail the two numerical schemes that we use to run the simulations first
talking about the finite difference scheme used to run my deterministic simulations, models
(2.3,2.4,2.5). Then I will talk about how I use the same scheme to simulate the stochastic
versions of the models (2.13,2.14,2.15)

4.1.1 Finite difference scheme Deterministic

We are dealing with a rectangular spatial domain we must discretise each dimension of
[a, b] × [c, d]. Suppose we discretise the x dimension into I intervals and the y dimension
into J intervals. Now the spatial distances between nodes in the x and y dimensions are
given by hx = b−a

I
and hy = d−c

J
. The result of this discretisation is now a 2-dimensional

grid of nodes (xi, yj) where xi = a+ ihx for i ∈ {0, ..., I} and yj = c+ jhy for j ∈ {0, ..., J}.
The discretisation of time into N steps is carried out in exactly the same way as in the
previous section, with τ = T

N
and tn = τn for n ∈ {1, ..., N}. For a triple (xi, yj, tn) of

these discrete points we denote u(xi, yj, tn) = uni,j.

The Laplacian of u or v on the interior grid nodes can now be approximated via cen-
tred finite differences:

∆u(xi, yj, tn) ≈
uni−1,j − 2uni,j + uni+1,j

h2
x

+
uni,j−1 − 2uni,j + uni,j+1

h2
y

,

for i ∈ {1, ..., I − 1} and j ∈ {1, ..., J − 1} .
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We approximate the time derivative as

∂u(xi, yj, tn)

∂t
≈
un+1
i,j − uni,j

τ
.

4.1.2 Finite difference scheme Stochastic

Now we can extend the finite difference scheme above to the stochastic setting in order
to do this we need to know how to approximate sample paths of the Q-Wiener process
using Theorem 2.81 [30]. Using given eigenfunctions, γi and eigenvalues qi needed for the
formula given in Theorem 2.81 we are able to create sample paths of the Q-Wiener process
through

W I(tn+1)−W I(tn) =
√
τ

I∑
i=1

√
qiγiζ

n
i

where

ζni =
βi(tn+1)− βi(tn√

τ

Here this means that ζni ∼ N(0, 1) and can be easily sampled. Note that often the eigen-
functions are trigonometric functions meaning that with careful choice of spatial points
evaluation of the Q-Wiener process can be achieved through a single Fourier transform.
As the eigenfunctions are trigonometric functions this allows us to split them up into their
respective real and imaginary parts which we then use for the axis.

From Example 10.12 [30], we can make the extension to two dimensions

W I(tn+1)−W I(tn) =
√
τ

I1/2∑
i1=−I1/2+1

I2/2∑
i2=−I2/2+1

√
qi1,i2γi1,i2ζ

n
i1,i2

where

γi1,i2 =
1

√
a1a2

e2πii1x1/a1e2πii2x2/a2 , qi1,i2 = e−αλi1,i2

for i =
√
−1, parameter α > 0, λi1,i2 = i21 + i22, for even integers I1, I2. a1, a2 are the size

of the domain in the x, y directions respectively. ζni1,i2 ∼ N(0, 2).

When we simulate the stochastic models we shall be taking an average over 100 reali-
sations then the plot that you see will be the average of them 100 simulations.

4.2 FitzHugh-Nagumo model

For all our simulations we shall be simulating in python using the standard Numpy and
Matplotlib packages. We use use a spatial domain of x, y ∈ (0, 1)2 and a time domain of
t ∈ (0, 15] where our time step dt = 0.001.
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4.2.1 DFHN

Figure 4.1: System (2.3) for parameter values a = 3.42, b = 1.21, e = 1. The left image
Du = 2.8 · 10−4, Dv = 5.3 · 10−3. The right image Du = 2.8 · 10−2, Dv = 5.3 · 10−4

The conditions we have to satisfy for Turing patterns are as follows

1. e > 1
b
(2a + 3b − (a + 1)

1+a+
√

(1−a)2−4b

2
) =⇒ 1 < 0.7018 We see this condition is

satisfied also we see fu = 0.7018 which is in line with our theoretical predictions.

2. b > e =⇒ 1.21 > 1

3. Dv
Du

> e

(2a+3b−(a+1)
1+a+

√
(1−a)2−4b
2

)
=⇒ 18.9286 > 1.4249.

4. (Dugv +Dvfu)
2 > 4DuDv(fugv − fvgu)

We can solve this to show that our critical Turing bifurcation point dc = Dv/Du

satisfies

dc =
2fugv − 4fvgu +

√
[2fugv − 4fvgu]2 − 4f 2

ug
2
v

2f 2
u

We see that the first 3 conditions have been satisfied and the forth we shall check it through
working out the critical diffusivity then checking it against the value we used in our simu-
lation.
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We can check the critical diffusivity value dc this was defined above. Which for our given
parameters we get a value of dc = 6.67286 in our simulations of a large diffusion coefficient
we use a diffusion ratio of 18.93 hence condition 4 would be satisfied hence explaining why
we see spatial patterns in the simulations.

When we reduce our diffusion ratio to a value to below this given point, in the simu-
lation on the right we use 0.01893 we see that patterns do not appear and the system
appears to tend towards a homogeneous state. In conclusion we see that our theoretical
results match up nicely with our simulations.

4.2.2 Stochastic simulations

We are now going to look at the effect of noise on the system (2.13). We choose diffusion
parameters such that d = Dv/Du = 6.67 which is exactly equal to the Turing bifurcation
point determined above.

From the Top simulation in (Figure 4.2) below we see that we still establish patterns
however they are much weaker than the patterns we were able to create in (Figure 4.1).
As we are now on the bifurcation point we can more closely analyse the effect of noise will
induce patterns.
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Figure 4.2: System (2.3) for parameter values a = 3.42, b = 1.21, e = 1, Du = 2.8 ·
10−4, Dv = 1.8676 · 10−3. Top left: σ1 = σ2 = 0.005, Top right: σ1 = σ2 = 0.5, Bottom
left: σ1 = cuu, σ2 = cvv where cu = cv = 0.005, Bottom right: σ1 = cuu, σ2 = cvv where
cu = cv = 0.5 41



Additive Noise

We consider the Top left and the Top right figure for this section.

Starting with small additive noise we see the effect of this is minimal as the densities
of each chemical are practically identical, however comparing the top left image and the
top image we do see a slight change in the positioning of the spots hence suggesting small
additive noise can induce a different mode in system.

Now looking at the Top right image we a brand new pattern arrangement than what
we have seen before, we see, comparing to figure 4.1 with the large diffusion coefficient,
that the densities of each chemical is much more concentrated indicated by the colour bar
we also see much larger groupings of the chemicals involved hence suggesting that a large
additive noise can induce much stronger pattern formation similar to using a much larger
diffusion coefficient.

In the SFHN model, with additive noise we see that we are able to induce different patterns
into the system, when the model is around its critical diffusion bifurcation. We see that
the additive noise acts in a way that is able to shift the model into selecting a different
mode which in turn creates a different pattern formation.

Multiplicative Noise

Here we look at the bottom left and the bottom right images.

cu, cv ∈ R can be viewed as the the intensity of our multiplicative noise. We shall compare
the effects of low intensity multiplicative noise to high intensity multiplicative noise. In
many different articles we see that this type of noise has many different interpretations, for
example some of its uses are purely computational and using this type of noise ensures that
the solution will never go negative meaning that the system can keep its physical realism
another interpretation of this type of noise can be viewed as the random effects by a small
number of molecules in a reaction or a perturbation of a control parameter.

Looking at the bottom left image, we see that using a low intensity multiplicative noise
once again induces a different mode, which can be seen by the different number and posi-
tioning of the spots. However, when we increase the intensity to we see from the simulation,
bottom right image, that the system quickly becomes ruined and little patterns can occur,
this is an interesting result as in the additive setting with the same intensity, we gained
clear distinct patterns. This shows us clearly that when we are using multiplicative noise
compared to additive different ranges of values we can use for noise intensity will exist.

In conclusion we can say that when the SFHN model is close to its critical diffusion bifurca-
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tion, noise can play an essential role in inducing patterns in a system. Conversely from the
bottom right image we can see that if the noise is too big it begins to play a large part in
a system’s dynamics it can totally ruin any patterns we are looking to achieve to the point
where no real conclusions can be drawn from it. Recall from earlier that the FHN model
was used famously to provide a description as to how patterns can form on animal skin,
these simulations show that if this explanation is correct for animal skin pattern formation
any problems during embryonic development which we could attribute as ’noise’ can lead
to serious developmental issues with patterns on the skin.
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4.2.3 Hopf Bifurcation

Figure 4.3: System (2.3) for parameter values a = 3.42, b = 1.21, e = 1.03888, Du =
2.8 · 10−4, Dv = 5.3 · 10−3.

Theoretically we should establish the same patterns at equal time points due to the sim-
ulations been deterministic, however if we compare separate time points such as t = 15
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and t = 60. Although tricky to see the oscillations we can see that there is some change in
the plots between the same time points implying that our theoretical conditions for a Hopf
bifurcation in the FHN model are valid. In order to investigate this properly one could
take a point in space an plot a time evolution of of that space point.

4.3 Brusselator model

4.3.1 DBru

Although we have no direct applications for patterns of this model we do see that spot like
patterns can be exhibited (figure 4.3) these are seen below

The conditions we have to satisfy for Turing patterns, are as follows

1. b < 1 + a2 =⇒ 7.02 < 7.25 We see that this is satisfied from the parameter values

2. a2 > 0 this is satisfied due to the positivity of the parameters involved

3. Dv
Du

> a2

b−1
=⇒ 80 > 1.038. We see that this high difusivity ratio means this

condition is satisfied

4. (Dv(b− 1)−Dua
2)2 > 4DvDua

2 =⇒ 0.22595 > 0.002

We see that all 4 of our conditions have been satisfied and this means that we should
expect to see patterns from our simulations which is what is backed up by the left image
in figure 4.3.
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Figure 4.4: System (2.4) for parameter values a = 2.5, b = 7.02. The left image Du =
0.001, Dv = 0.08. The right image Du = 0.001, Dv = 0.0008

We can check the critical diffusivity value dc this was derived in section 3.3.2. Which for
our given parameters we get a value of dc = 1.2484. Our simulation on the left we have
a diffusion ration of d = 80 > dc hence why we get such strong spot patterns. When
we reduce our diffusion ratio to a value to below this given point, for the simulation on
the right we use d = 0.8 < dc we expect that the system would tend towards a steady
homogeneous state which it appears to be doing from the simulation. Hence, we can say
for this model our theoretical results match up nicely with our simulations.

4.3.2 Stochastic Simulations

We know the critical Turing bifurcation value for our given parameters is dc = 1.2484. We
then choose Du = 0.001 and Dv = 0.0012484, choosing these values we gain a diffusion
ratio of d = 1.2484 which is exactly the critical bifurcation where we would expect patterns
to occur for our parameters. Doing this will allow us to investigate the effect of noise on
the Brusselator model.
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Figure 4.5: System (2.4) for parameter values a = 2.5, b = 7.02, Du = 0.001, Dv =
0.0012484. Top left: σ1 = σ2 = 0.005, Top right: σ1 = σ2 = 0.5, Bottom left:
σ1 = cuu, σ2 = cvv where cu = cv = 0.005, Bottom right: σ1 = cuu, σ2 = cvv where
cu = cv = 0.5
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Looking at the top simulation which sits on the systems Turing bifurcation. We see very
weak indications of spot like patterns as seen in (Figure 4.3) for a large diffusion coefficient.
Purple appears to be breaking through the blue periodically, despite it been weak I feel
this is a good indication that we are indeed on the Turing bifurcation.

Additive Noise

We will consider the Top left and Top right images of (Figure 4.4) here.

We see that even with a small amount of noise induced, the weak patterns that we had
seen are ruined so there is no such patterns at all, it appears as if the additive noise here
appears to act as an additional diffusion coefficient for the two chemicals causing them to
become more stable and mix well.

Now considering the Top right image. In the FHN model we saw that this larger noise
magnitude was able to induce new patterns into the system that we hadn’t seen before
and we saw higher chemical density’s. However, when we use this larger noise magnitude
we see a much more random spread of aggregation with no real clear and distinct pat-
terns emerging. We do see however incredibly high concentrated densities of the chemical
u-purple. This does imply that at this stage the noise has taken over the system and the
chemicals can’t interact correctly to form the patterns we expect.

In the SBru model with additive noise, we see that just a small addition of noise into
the system knocks the system the wrong way and will not induce patterns into the system.
This is an interesting results as for the SFHN the opposite was true. If the noise does get
too big eventually the noise will take over and patterns in the system can’t emerge.

Multiplicative Noise

Now we analyse the Bottom left and the Bottom right

For low intensity multiplicative noise we see that like in the additive case the weak pat-
terns that were exhibited are destroyed however we do see higher density of the chemical
u. However, when we increase the intensity to cu = cv = 0.5 we see that this intensity just
completely destroys the system almost pushing it towards a complete steady state. We see
that the high intensity multiplicative noise causes pockets of aggregation of the chemical
u where almost all of the chemical is concentrated.
For the SBru model it appears that we can not induce patterns when the intensity of the
noise is small or large, and this holds for both when the noise is multiplicative or additive.
We see that clearly this system is very sensitive to changes in its spatial dynamics and
any extra forcing in the system can lead to its collapse. This is an interesting result as
in the FHN model we saw that the additional noise induced different modes and patterns
that could not be achieved through deterministic simulations occur. In the Bru model it
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appears that when the systems sits on its Turing bifurcation additonal noise knocks the
system further away from its critical bifurcation point meaning that patterns can’t occur.

4.4 Schnakenberg model

4.4.1 Deterministic Simulations

This is potentially one of the most interesting models that will examine we see that the
model can exhibit a variety of different patterns for different parameter values. We see
that for the same diffusion coefficient we exhibit both spots and stripes this implies that
in our simulations different modes are been selected when we change the value of the pa-
rameters. Here we shall only look at the end time simulation above in order to concentrate
the complex nature of the patterns demonstrated. We shall perform the analysis on stripes
however the same can be done with spots also.

Recall we made the transformation of set b − a = α, a + b = β hence α = 0.8, β = 1.
The conditions we have to satisfy for pattern formation are as follows

1. α < β3 =⇒ 13 > 0.8

2. β2 > 0 satisfied as all parameters are greater than 0.

3. Dv
Du

> β3

α
=⇒ 10 > 1.25 we see that we require b¿a to ensure a positive diffusion

coefficient which is satisfied. But also the conditon enforced by point 3 is satisfied.

4. (Dvα−Duβ
3)2 > 4DuDvβ

4 =⇒ 196 > 160

We see that all 4 of our conditions have been satisfied and this means that we should expect
to see patterns from our simulations which is what is backed up by the top left simulation of
(Figure 4.5). When we check the conditions for the different parameter values we note that
the conditions are also satisfied just we then get spots instead of stripes when simulating.
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Figure 4.6: System (2.5) for parameter values Du = 2, Dv = 10 for the top row. Du =
100, Dv = 10 for the bottom row. To exhibit stripes we use parameters a = 0.1, b = 0.9.
For spots we use a = 0.25, b = 2.25

We can check the critical diffusivity value dc this was defined in section 3.3.3. Which for
our given parameters we get a value of dc = 3.6323, when we reduce our diffusion ratio to
a value to below this given point we expect that patterns do not appear, bottom row of
(Figure 4.5) we use d = 0.1 < dc. We see that our theoretical results match up nicely with
our simulations.

We see on the bottom row of (Figure 4.5) more than any others what happens when
we reduce the diffusion coefficient to a very small value, smaller than the critical diffusion
ratio, in one of the simulations we just receive a homogeneous steady state where we would
have normally got spots with a normal diffusion parameter. For the situation where we
would get stripes we see some slight mixing but nothing that can constitute a pattern.
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4.4.2 Stochastic Simulations

As seen before we can get spots or stripes, when we simulate the deterministic model close
to the models critical bifurcation point we notice that we get very similar patterns just
with different modes for the comparison please see appendix (). Hence we shall proceed
with the parameter set that generated stripes in the deterministic case. Note that the criti-
cal diffusion point is changed respective to the parameter values changing in the spots case.

We have seen for the SSch dc = 3.6323. We then choose Du = 10, Dv = 36.323 using
these values will give us a diffusion ratio of d = 3.3623. Which is exactly the critical
Turing bifurcation. We can see from the top simulation that when we are sitting exactly
on the Turing bifurcation striped patterns do appear however they are not as well defined
as in (Figure 4.5).

Additive Noise

Looking at the first row in (Figure 4.6), when we add just a small amount of noise to
the system we see that a different mode is induced, it appears as if the system is shifted
to presenting spot like patterns of the blue chemical. We have seen this occur previously
in other models. However when we add a larger amount of noise to the system that the
patterns are completely destroyed and it looks as if the noise has completely taken over in
the system.

In the SCK model with additive noise, we notice that a small amounant of additive noise
can induce a new mode into the system creating patterns that have not previously been
observed however as with most models if the noise intensity becomes too strong the model
can can present no patterns at all.

Multiplicative Noise

When we add a weak multiplicative noise to the system we see that in this instance it
appears almost like a weaker version of its additive counterpart with the same intensity.
This could suggest that the multiplicative noise is too strong for the system even at low
intensity values.

When the intensity of the multiplicative noise is raised to a much larger value we see
once again that the noise takes over and the system can’t exhibit patterns.

Overall with the SCK model we see that any slight noise that is introduced to system
when it is near its critical Turing bifurcation point can induce a new mode creating pat-
terns unseen in the deterministic setting, however we do notice that there is very little
difference between the multiplicative and additive noise for this model.
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Figure 4.7: System (2.5) for parameter values a = 0.1, b = 0.9, Du = 10, Dv = 36.323. Top
left: σ1 = σ2 = 0.005, Top right: σ1 = σ2 = 0.5, Bottom left: σ1 = cuu, σ2 = cvv where
cu = cv = 0.005, Bottom right: σ1 = cuu, σ2 = cvv where cu = cv = 0.5
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4.4.3 Comments on the Perturbed system

Considering numerical simulations of systems (2.9,2.10,2.11) would not have enhanced our
knowledge of the effect of noise on a system mainly due to the perturbation been determin-
istic. What we were able to observe in the PFHN was that stronger the perturbation the
less clear and distinct the patterns became showing a shift of mode in the systems. When
we looked at (2.10) we were able to see that the system could still exhibit rigid pattern
formation even when the intensity of the perturbation was large, this could imply that the
conditions we derived (3.18) were still satisfied for the PBru models parameters where as
the parameters used in the PFHN would not have satisfied (3.18). Another interesting
result comes from the PSch, in (A.1.3). We are able to see that when the deterministic
perturbation is small we are able to knock the system into a different mode exhibiting new
patterns. When the perturbation becomes much larger we see that the system is pushed
towards a homogenous steady state which is in line with the theory. When this occurs it
can lead us to believe that the conditions derived in (3.18) are not satisfied.

4.5 Numerical simulations of Chemotaxis

4.5.1 Deterministic (Dd)

In this section we shall explore the theoretical results compared to the simulations in a
deterministic setting, recall system (2.19)

Figure 4.8: A simulation of (2.19) here Du = Dv = 10−3, a = b = 1, r = 0.0001, χ = 1 ·10−4

Clearly from figure 4.22 we can see that the cells (yellow parts) do begin to move together
as more and more waves of cAMP are released. In line with what is expected from this
biological problem.
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We now compare with the conditions we derived (3.30), now we will plug in the parameter
values given

1. −r − b < 0 =⇒ −0.0001− 1 = −1.0001 < 0 we see that this is satisfied

2. rb > 0 =⇒ 0.0001 · 1 = 0.0001 > 0 we see this condition is also satisfied.

3. χ > 1
a
(rDv + bDu) =⇒ χ > 1.001 · 10−3 this provides us a condition for for how big

the chemotactic sensitivity has to be.

4. (χa − rd − b)2 > 4rdb. We were able to solve for the chemotactic sensitivity to
get a new condition for how big χ has to be. χ > Du

a
(rd + b + 2

√
rdb) where

d = Du
Dv

=⇒ χ > 1.0201.

We then can hence derive that the critical chemotactic sensitivity for which we expect
aggregation to occur is at χ∗ = 1.0201 hence any value greater than this we expect the
steady state to become unstable and patterns will begin to appear from this we can conclude
χ∗ is our chemotactic bifurcation point. We see from our numerical simulations that we
do have clear aggregation however we do not have pattern formation this is due to the fact
that we are not able to satisfy the

4.5.2 Stochastic Dd

Now we take a look at the Keller Segel model which is then perturbed by time dependent
Wiener process (Definition 2.6). Due to computational cost we are only able to simulate
the case where we don’t consider a spatial element to the noise. We can write the general
model in the form

∂u

∂t
= Du∆u− χ∇(u∇v) + ru(1− u) + σdW (t),

∂v

∂t
= Dv∆v + au− bv + σdW (t)

(4.1)

Where W (t) represents the standard Wiener process (Definition 2.4).

Due to us only simulating time dependent Brownian motion we then simulate this through
using the Euler-Maruyama method [31] which simulates

σdW ∼
√
dt · σζn

Where ζn ∼ N(0, 1). See code in (B.4.2) for details.
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Figure 4.9: A simulation of (2.21) here Du = Dv = 10−3, a = b = 1, r = 0.0001, χ = 1 ·10−4

with spatial homogenous white noise

For this chemotactic simulation we use χ = 10−4 which is the highest available to us com-
putationally. We see clearly that there is no clear indications that patterns will occur at
all. This simulation has been averaged over many realisations.

In conclusion we can see that when a stochastic forcing is applied to the model unlike
the reaction diffusion setting where we could play around the bifurcation point to see how
forcing could affect patterns in the chemotaxis setting we see that the stochastic forcing
takes over the model with no indication of pattern formation at all.

4.5.3 Comments on PDd

We see when we added the deterministic perturbation to the system that the results follow
in line with what we would expect that the stronger the perturbation the less aggregation
we see in the model. See A.1.4
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Appendix A

Perturbed Numerical Simulations

A.1 Biological Systems

For all of our systems the perturbation requires a variance to be given, following [29] we
use σ = 0.5.
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A.1.1 PFHN

Figure A.1: System (2.3) for parameter values a = 3.42, b = 1.21, e = 1, Du = 2.8 ·
10−4, Dv = 5.3 · 10−3. The left image D1 = 1 · 10−5, D2 = 1 · 10−5. The right image
D1 = 1 · 10−1, D2 = 1 · 10−1
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A.1.2 PBru

Figure A.2: System (2.4) for parameter values a = 2.5, b = 7.02, Du = 0.001, Dv = 0.08.
The left image D1 = 1 · 10−5, D2 = 1 · 10−5. The right image D1 = 1 · 10−1, D2 = 1 · 10−1

58



A.1.3 PSch

Figure A.3: System (2.5) for parameter values Du = 2, Dv = 10 for all simulations. To
exhibit stripes we use parameters a = 0.1, b = 0.9. For spots we use a = 0.25, b = 2.25
Here on the left D2 = D4 = 10−5 and on the right D2 = D4 = 10−1
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A.1.4 Sch close to Turing bifurcation

Figure A.4: System (2.5) for parameter values Du = 10, Dv = 36.323, a = 0.1, b = 0.9 for
the left image. Du = 10, Dv = 15.2, a = 0.25, b = 2.25 for the right image.
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A.1.5 PDd

Figure A.5: A simulation of (2.20) hereDu = Dv = 10−3, a = b = 1, r = 0.0001, χ = 1·10−4.
Here at the top D1 = D2 = 10−5 then on the bottom row D1 = D2 = 10−1
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Appendix B

Code For Simulations

We shall provide the basic out line for the code for which it can be changed to suit each
individual model.

B.1 Deterministic simulations

import numpy as np
import matp lo t l i b . pyplot as p l t

#constant s
a=2.5
d i f u =0.001
d i f v =0.08 # d i f u =0.0008 f o r sma l l e r d i f f u s i o n c o e f f i c i e n t
b=7.02
#Change the parameters a c co rd ing ly f o r FHN & Sch

s = 100 # 2D gr id s i z e
dx = 2.0/ s # s p a t i a l s tep

T = 15 # end time
dt = 0.001 # time step
n = i n t (T /dt ) # num of i t e r a t i o n s

U = np . array (np . random . rand ( s , s ) )
#us ing random no i s e from 0 to 1 as i n i t i a l cond
V = np . array (np . random . rand ( s , s ) )

de f Lap(L ) :
Ltop = L[0: −2 , 1: −1]
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L l e f t = L[1: −1 , 0: −2]
Lbottom = L [ 2 : , 1: −1]
Lr ight = L[1: −1 , 2 : ]
Lcenter = L[1: −1 , 1: −1]
r e turn ( Ltop + L l e f t + Lbottom + Lr ight −

4 ∗ Lcenter ) / dx∗∗2

de f show pat (U, ax=None ) :
ax . imshow (U, cmap=p l t . cm . cool ,

i n t e r p o l a t i o n =’ b i l i n e a r ’ ,
extent =[0 , 1 , 0 , 1 ] )

ax . s e t a x i s o n ( )
ax . s e t x l a b e l ( r ’ $x$ ’ )
ax . s e t y l a b e l ( r ’ $y$ ’ )

f i g , axes = p l t . subp lo t s (2 , 2 , f i g s i z e =(8 , 8 ) )
s t e p p l t = n // 4
# us ing the f i n i t e d i f f e r e n c e method
f o r i in range (n ) :
# We compute the Laplac ian o f u and v .

deltaU = Lap(U)
deltaV = Lap(V)

# We take the va lue s o f u and v i n s i d e the g r id .
Uc = U[1: −1 , 1: −1]
Vc = V[1: −1 , 1: −1]

# We update the v a r i a b l e s through f i n i t e d i f f e r e n c e
U[1: −1 , 1 : −1] , V[1: −1 , 1: −1] = \

Uc + dt ∗ ( f (u , v ) ) , \
Vc + dt ∗ ( g (u , v ) )
# Here i n s i d e the bracket t h i s where you put the
#d i f f e r e n t k i n e t i c f u n c t i o n s
# e . g f o r Bru model f (u , v)= d i f u ∗ deltaU + a−(b+1)∗Uc+Uc∗∗2∗Vc

# g (u , v)= b ∗ Uc−Uc∗∗2∗Vc+d i f v ∗deltaV
# Implor ing Neumann c o n d i t i o n s d e r i v a t i v e s at the edges are zero .

f o r L in (U, V) :
L [ 0 , : ] = L [ 1 , : ]
L[ −1 , : ] = L[ −2 , : ]
L [ : , 0 ] = L [ : , 1 ]
L [ : , −1] = L [ : , −2]
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# Plo t t i ng o f the system
i f i % s t e p p l t == 0 and i < 4 ∗ s t e p p l t :

ax = axes . f l a t [ i // s t e p p l t ]
show pat (U, ax=ax )
ax . s e t t i t l e ( f ’ $t={ i ∗ dt : . 2 f }$ ’ )
p=ax . imshow (U, cmap=p l t . cm . cool ,
i n t e r p o l a t i o n =’ b i l i n e a r ’ ,
extent =[0 , 1 , 0 , 1 ] )
f i g . c o l o rba r (p , ax=ax )
f i g . t i g h t l a y o u t ( r e c t =[0 , 0 . 03 , 1 , 0 . 9 5 ] )
f i g . s u p t i t l e ( ’ B ru s s e l a t o r system with a l a r g e d i f f u s i o n c o e f f i c e n t ’ )

B.2 Perturbed Simulation

import numpy as np
import matp lo t l i b . pyplot as p l t

#constant s
a=2.5
d i f u =0.001
d i f v =0.08 # d i f u =0.0008 f o r sma l l e r d i f f u s i o n c o e f f i c i e n t
D 1 = 10∗∗−5 #D 1 = 10∗∗−1
D 2 = 10∗∗−5 #D 2 = 10∗∗−1 f o r l a r g e pe r turbat i on
b=7.02
#Change the parameters a c co rd ing ly f o r FHN & Sch
uS = a
vS = a/b
# These are the steady s t a t e s f o r the Bru model ,
# change acco rd ing ly f o r FHN and Sch

s = 100 # 2D gr id s i z e
dx = 2.0/ s # s p a t i a l s tep

T = 15 # end time
dt = 0.001 # time step
n = i n t (T /dt ) # num of i t e r a t i o n s

U = np . array (np . random . rand ( s , s ) )
#us ing random no i s e from 0 to 1 as i n i t i a l cond
V = np . array (np . random . rand ( s , s ) )
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de f Lap(L ) :
Ltop = L[0: −2 , 1: −1]
L l e f t = L[1: −1 , 0: −2]
Lbottom = L [ 2 : , 1: −1]
Lr ight = L[1: −1 , 2 : ]
Lcenter = L[1: −1 , 1: −1]
r e turn ( Ltop + L l e f t + Lbottom + Lr ight −

4 ∗ Lcenter ) / dx∗∗2

de f show pat (U, ax=None ) :
ax . imshow (U, cmap=p l t . cm . cool ,

i n t e r p o l a t i o n =’ b i l i n e a r ’ ,
extent =[0 , 1 , 0 , 1 ] )

ax . s e t a x i s o n ( )
ax . s e t x l a b e l ( r ’ $x$ ’ )
ax . s e t y l a b e l ( r ’ $y$ ’ )

f i g , axes = p l t . subp lo t s (2 , 2 , f i g s i z e =(8 , 8 ) )
s t e p p l t = n // 4
# us ing the f i n i t e d i f f e r e n c e method
f o r i in range (n ) :
# We compute the Laplac ian o f u and v .

deltaU = Lap(U)
deltaV = Lap(V)

# We take the va lue s o f u and v i n s i d e the g r id .
Uc = U[1: −1 , 1: −1]
Vc = V[1: −1 , 1: −1]

# We update the v a r i a b l e s through f i n i t e d i f f e r e n c e
U[1: −1 , 1 : −1] , V[1: −1 , 1: −1] = \

Uc + dt ∗ ( f (u , v ) + ( D 1∗Uc−D 1∗uS)∗np . random . normal ( a , 0 . 5 ) ) , \
Vc + dt ∗ ( g (u , v ) + ( D 2∗Vc−D 1∗vS )∗np . random . normal ( a/b , 0 . 5 ) ) )
# Here i n s i d e the bracket t h i s where you put the
#d i f f e r e n t k i n e t i c f u n c t i o n s
# e . g f o r Bru model f (u , v)= d i f u ∗ deltaU + a−(b+1)∗Uc+Uc∗∗2∗Vc

# g (u , v)= b ∗ Uc−Uc∗∗2∗Vc+d i f v ∗deltaV
# Adding the d e t e r m i n i s t i c pe r tu rbat i on on the
#end around the r e s p e c t i v e steady s t a t e s f o r U and V

# Implor ing Neumann c o n d i t i o n s d e r i v a t i v e s at the edges are zero .
f o r L in (U, V) :
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L [ 0 , : ] = L [ 1 , : ]
L[ −1 , : ] = L[ −2 , : ]
L [ : , 0 ] = L [ : , 1 ]
L [ : , −1] = L [ : , −2]

# Plo t t i ng o f the system
i f i % s t e p p l t == 0 and i < 4 ∗ s t e p p l t :

ax = axes . f l a t [ i // s t e p p l t ]
show pat (U, ax=ax )
ax . s e t t i t l e ( f ’ $t={ i ∗ dt : . 2 f }$ ’ )
p=ax . imshow (U, cmap=p l t . cm . cool ,
i n t e r p o l a t i o n =’ b i l i n e a r ’ ,
extent =[0 , 1 , 0 , 1 ] )
f i g . c o l o rba r (p , ax=ax )
f i g . t i g h t l a y o u t ( r e c t =[0 , 0 . 03 , 1 , 0 . 9 5 ] )
f i g . s u p t i t l e ( ’ B ru s s e l a t o r system with a smal l per turbat ion ’ )

B.3 Stochastic simulation

B.3.1 Q-Wiener process

from math import ∗
# Numpy
import numpy as np
from numpy import matl ib
f f t=np . f f t . f f t
f f t 2=np . f f t . f f t 2
i f f t=np . f f t . i f f t
i f f t 2=np . f f t . i f f t 2

# Plo t t i ng
%matp lo t l i b i n l i n e
import matp lo t l i b
import matp lo t l i b . pyplot as p l t
from m p l t o o l k i t s . mplot3d import Axes3D
from matp lo t l i b import cm
# Scipy
import s c ipy
from sc ipy import spar s e
from sc ipy . spa r s e import l i n a l g
from sc ipy import opt imize
from sc ipy import f f t p a c k
#
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de f i c s p d e d s t 1 (u ) :
r e turn sc ipy . f f t p a c k . dst (u , type =1, a x i s =0)/2

f f t 2=np . f f t . f f t 2
i f f t 2=np . f f t . i f f t 2

#
de f ge t twod bj ( d t r e f , J , a , alpha ) :

”””
Alg 4 .5 Page 443
”””
lambdax=2 ∗ pi ∗ np . hstack ( [ np . arange (0 , J [ 0 ] / / 2 +1) ,
np . arange(− J [ 0 ] / / 2 + 1 , 0 ) ] ) / a [ 0 ]
lambday=2 ∗ pi ∗ np . hstack ( [ np . arange (0 , J [ 1 ] / / 2 +1) ,
np . arange(− J [ 1 ] / / 2 + 1 , 0 ) ] ) / a [ 1 ]
lambdaxx , lambdayy=np . meshgrid ( lambdax , lambday , index ing =’ i j ’ )
r o o t q j=np . exp(− alpha ∗ ( lambdaxx ∗∗ 2 + lambdayy ∗∗ 2) / 2)
bj=r o o t q j ∗ s q r t ( d t r e f ) ∗ J [ 0 ] ∗ J [ 1 ] / s q r t ( a [ 0 ] ∗ a [ 1 ] )
r e turn bj

#
de f get twod dW ( bj , kappa ,M) :

”””
Alg 10 .6 Page 444
”””
J=bj . shape
i f ( kappa == 1 ) :

nn=np . random . randn (M, J [ 0 ] , J [ 1 ] , 2 )
e l s e :

nn=np . sum(np . random . randn ( kappa ,M, J [ 0 ] , J [ 1 ] , 2 ) , 0 )
nn2=np . dot (nn , np . array ( [ 1 , 1 j ] ) ) ;
tmp=i f f t 2 ( bj ∗nn2 )
dW1=np . r e a l (tmp)
dW2=np . imag (tmp)
return dW1,dW2

B.3.2 Stochastic simulation

import numpy as np
import matp lo t l i b . pyplot as p l t

#cons tante s
a=2.5
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d i f x =0.001
d i f y =0.0012484
s i g 1 =0.005
s i g 2 =0.005 # s i g =0.5 f o r l a r g e r no i s e
b=7.02
# Change f o r FHN and Sch

s = 100 # s i z e o f the 2D gr id
dx = 2 .0 / s i z e s p a t i a l s tep

T = 15 # t o t a l time
dt = 0.001 # time step
n = i n t (T / dt ) # num of i t e r a t i o n s

U = np . array (np . random . rand ( s i z e , s i z e ) ) #
#random no i s e from 0 to 1 .
V = np . array (np . random . rand ( s i z e , s i z e ) )

de f Lap(L ) :
Ltop = L[0: −2 , 1: −1]
L l e f t = L[1: −1 , 0: −2]
Lbottom = L [ 2 : , 1: −1]
Lr ight = L[1: −1 , 2 : ]
Lcenter = L[1: −1 , 1: −1]
r e turn ( Ltop + L l e f t + Lbottom + Lr ight −

4 ∗ Lcenter ) / dx∗∗2

de f show pat (U, ax=None ) :
ax . imshow (U, cmap=p l t . cm . cool ,

i n t e r p o l a t i o n =’ b i l i n e a r ’ ,
extent =[−1, 1 , −1, 1 ] )

ax . s e t a x i s o n ( )
ax . s e t x l a b e l ( r ’ $x$ ’ )
ax . s e t y l a b e l ( r ’ $y$ ’ )

f i g , axes = p l t . subp lo t s (2 , 2 , f i g s i z e =(8 , 8 ) )
s t e p p l o t = n // 4
# F i n i t e d i f f e r e n c e
f o r j in range ( 1 0 0 ) :

J = [98 , 98 ] ; d t r e f =0.01; kappa=100; a=[2∗ pi , 3∗ pi ]
alpha =0.05; bj=get twod bj ( d t r e f , J , a , alpha )
W1,W2=get twod dW ( bj , kappa , 1 )
f o r i in range (n ) :
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# We compute the Lap o f u and v .
deltaU = Lap(U)
deltaV = Lap(V)

# We take the va lue s o f u and v i n s i d e the g r id .
Uc = U[1: −1 , 1: −1]
Vc = V[1: −1 , 1: −1]

#We update the v a r i a b l e s .
U[1 : −1 , 1 : −1] , V[1: −1 , 1: −1] = \

Uc + dt ∗ ( f (u , v ) + s i g 1 ∗W1[ 0 , : , : ] ) , \
Vc + dt ∗ ( g (u , v ) s i g 1 ∗W1[ 0 , : , : ] )

# Swap out f o r the s p e c i f i c model equat ions
# add ∗Vc next to W1 to make the no i s e m u l t i p l i c a t i v e

f o r L in (U, V) :
L [ 0 , : ] = L [ 1 , : ]
L[ −1 , : ] = L[ −2 , : ]
L [ : , 0 ] = L [ : , 1 ]
L [ : , −1] = L [ : , −2]

# p l o t t i n g
i f i % s t e p p l t == 0 and i < 4 ∗ s t e p p l t :

ax = axes . f l a t [ i // s t e p p l o t ]
show plt (np . mean(U) , ax=ax )
ax . s e t t i t l e ( f ’ $t={ i ∗ dt : . 2 f }$ ’ )
p=ax . imshow (U, cmap=p l t . cm . cool ,
i n t e r p o l a t i o n =’ b i l i n e a r ’ ,
extent =[0 , 1 , 0 , 1 ] )
f i g . c o l o rba r (p , ax=ax )
f i g . t i g h t l a y o u t ( r e c t =[0 , 0 . 03 , 1 , 0 . 9 5 ] )
f i g . s u p t i t l e ( ’ B ru s s e l a t o r system with smal l a d d i t i v e no i se ’ )

B.4 Chemotaxis

B.4.1 Deterministic

import numpy as np
import matp lo t l i b . pyplot as p l t
%matp lo t l i b i n l i n e

s = 100 # s i z e o f g r i d
ds = 1 . / n # s p a t i a l r e s o l u t i o n , assuming space i s [ 0 , 1 ] ∗ [ 0 , 1 ]
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dt = 0.01 # temporal r e s o l u t i o n

Du = 10∗∗−3 # d i f f u s i o n constant o f u
Dv = 10∗∗−3 # d i f f u s i o n constant o f v
r = 0.0001
a = 1 . # product ion o f cAMP by Dictyoste l ium c e l l s .
b = 1 . # degradat ion o f cAMP by p r o t e o l y t i c enzymes .
ch i = 1.∗10∗∗−4 #chemotact ic s e n s i t i v t y

v = np . z e r o s ( [ s , s ] )
u = np . z e r o s ( [ s , s ] )
f o r x in range ( s ) :

f o r y in range ( s ) :
v [ x , y ] = 1 . + np . random . uniform ( −0.1 , 0 . 1 ) # smal l no i s e i s added
u [ x , y ] = 1 . + np . random . uniform ( −0.1 , 0 . 1 ) # smal l no i s e i s added

nextv = np . z e r o s ( [ s , s ] )
nextu = np . z e r o s ( [ s , s ] )

de f run ( ) :
g l o b a l v , u , nextv , nextu
f o r y in range ( s ) :

f o r x in range ( s ) :
vC , vR, vL , vU, vD = v [ y , x ] , v [ ( y+1)%s , x ] , v [ ( y−1)%s , x ] ,
v [ y , ( x+1)%s ] , v [ y , ( x−1)%s ]
uC, uR, uL , uU, uD = u [ y , x ] , u [ ( y+1)%s , x ] , u [ ( y−1)%s , x ] ,
u [ y , ( x+1)%s ] , u [ y , ( x−1)%s ]
# L
uLap = (uR + uL + uU + uD − 4 ∗ uC) / ( ds ∗∗2)
vLap = (vR + vL + vU + vD − 4 ∗ vC) / ( ds ∗∗2)

# state −t r a n s i t i o n func t i on
A = (Du ∗ uLap)
B = − ch i ∗ ( (uR−uL)∗ (vR−vL)+(uU−uD)∗ (vU−vD)+4∗uC∗vLap ) +
r ∗uC−r ∗uC∗∗2
nextu [ y , x ] = uC + (B+ A) ∗ dt
nextv [ y , x ] = vC + ( a ∗ uC − b ∗ vC + Dv ∗ vLap ) ∗ dt

u , nextu = nextu , u
v , nextv = nextv , v
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p l t . f i g u r e ( f i g s i z e =(20 ,5))

d = 1
f o r i in range (0 , 1251 ) :

run ( )
i f i %250 == 0 :

p l t . subp lot (1 , 4 , d )
# draw only money , people look the same
p l t . imshow ( nextu , i n t e r p o l a t i o n =’ b i l i n e a r ’ , extent =[0 , 1 , 0 , 1 ] )
x=p l t . imshow ( nextu , i n t e r p o l a t i o n =’ b i l i n e a r ’ , extent =[0 , 1 , 0 , 1 ] )
p l t . x t i c k s ( [ 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 ] ) ; p l t . y t i c k s ( [ 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 ] ) ;
p l t . t i t l e ( ’ Ce l l dens i ty u ’ )
p l t . c o l o rba r ( x )
d += 1

B.4.2 Stochastic

import numpy as np
import matp lo t l i b . pyplot as p l t
%matp lo t l i b i n l i n e

s = 100 # s i z e o f g r i d
ds = 1 . / n # s p a t i a l r e s o l u t i o n , assuming space i s [ 0 , 1 ] ∗ [ 0 , 1 ]
dt = 0.01 # temporal r e s o l u t i o n

Du = 10∗∗−3 # d i f f u s i o n constant o f u
Dv = 10∗∗−3 # d i f f u s i o n constant o f v
r = 0.0001
a = 1 . # product ion o f cAMP by Dictyoste l ium c e l l s .
b = 1 . # degradat ion o f cAMP by p r o t e o l y t i c enzymes .
ch i = 1.∗10∗∗−4 #chemotact ic s e n s i t i v t y

v = np . z e r o s ( [ s , s ] )
u = np . z e r o s ( [ s , s ] )
f o r x in range ( s ) :

f o r y in range ( s ) :
v [ x , y ] = 1 . + np . random . uniform ( −0.1 , 0 . 1 ) # smal l no i s e i s added
u [ x , y ] = 1 . + np . random . uniform ( −0.1 , 0 . 1 ) # smal l no i s e i s added

nextv = np . z e r o s ( [ s , s ] )
nextu = np . z e r o s ( [ s , s ] )
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de f run ( ) :
g l o b a l v , u , nextv , nextu
f o r y in range ( s ) :

f o r x in range ( s ) :
vC , vR, vL , vU, vD = v [ y , x ] , v [ ( y+1)%s , x ] , v [ ( y−1)%s , x ] ,
v [ y , ( x+1)%s ] , v [ y , ( x−1)%s ]
uC, uR, uL , uU, uD = u [ y , x ] , u [ ( y+1)%s , x ] , u [ ( y−1)%s , x ] ,
u [ y , ( x+1)%s ] , u [ y , ( x−1)%s ]
# L
uLap = (uR + uL + uU + uD − 4 ∗ uC) / ( ds ∗∗2)
vLap = (vR + vL + vU + vD − 4 ∗ vC) / ( ds ∗∗2)

# state −t r a n s i t i o n func t i on
A = (Du ∗ uLap)
B = − ch i ∗ ( (uR−uL)∗ (vR−vL)+(uU−uD)∗ (vU−vD)+4∗uC∗vLap )
+ r ∗uC−r ∗uC∗∗2
nextu [ y , x ] = uC + (B+ A) ∗ dt +
np . s q r t ( dt )∗np . random . normal (0 , 1 )
nextv [ y , x ] = vC + ( a ∗ uC − b ∗ vC + Dv ∗ vLap ) ∗ dt +
np . s q r t ( dt )∗np . random . normal (0 , 1 )
# Simulate Wiener p roce s s us ing Euler method

u , nextu = nextu , u
v , nextv = nextv , v

p l t . f i g u r e ( f i g s i z e =(20 ,5))

d = 1
f o r i in range (0 , 1251 ) :

run ( )
i f i %250 == 0 :

p l t . subp lot (1 , 4 , d )
# draw only money , people look the same
p l t . imshow ( nextu , i n t e r p o l a t i o n =’ b i l i n e a r ’ , extent =[0 , 1 , 0 , 1 ] )
x=p l t . imshow ( nextu , i n t e r p o l a t i o n =’ b i l i n e a r ’ , extent =[0 , 1 , 0 , 1 ] )
p l t . x t i c k s ( [ 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 ] ) ; p l t . y t i c k s ( [ 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 ] ) ;
p l t . t i t l e ( ’ Ce l l dens i ty u ’ )
p l t . c o l o rba r ( x )
d += 1
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Appendix C

Well Posedness

C.1 Deterministic

We can say that a problem is well-posed ”in the sense of Hadamard” if the following are
satisfied

• Existence and uniqueness (C1)

• Existence for all times (C2)

• Continuous dependency on the initial conditions (C3)

However these conditions alone are not sufficient for the biological and physical models
that we shall examine as we are working with physical parameters, this means that we can
not allow the solution to become negative also the solution must be bounded hence we add
two new conditions in order so we can class our problem as well-posed.

• Solution is non-negative for non-negative initial data (C4)

• Solution is bounded for all bounded initial data (C5)

We can apply theory of semigroups and functional analysis to show well-posedness (C1-C5)
for the general system (2.1-2.3). Note that the theory of semigroups is set out in Appendix
A and important results shall be noted throughout for the reader to visit.

C.1.1 Uniqueness and Local Existence

We state some basic hypotheses which are assumed to hold

• D1, D2 > 0 (H1)

• u0, v0 ≥ 0 are continuous on Ω̄; u0, v0 ∈ C0
L∞(Ω) (H2)
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• f, g are continuously differentiable functions from R̄3
+ into R with f(t, 0, s) ≥ 0 and

g(t, r, 0) ≥ 0 for all t, r, s ≥ 0 (H3)

• There existm > 0 and a continuous fucntion F : R̄2
+ =⇒ R+ such that f(t, r, s), g(t, r, s) ≤

exp(mt)F (r, s),∀t, r, s ≥ 0 (H4)

Note compared to one of the books we are following by [37] we have added (H4) to achieve
local existence for (u0, v0) ∈ (C0

L∞)2.

Proposition C.1.1 (Local existence see [38] Thm 3.3.1). Given Hypotheses (H1-H4) are
satisfied then there exist T = T (u0, v0) > 0 such that reaction diffusion system (2.1-
2.3) has a unique solution (u, v) ∈ (C0

L∞((0, T ];D(Hα)))2 with u(0) = u0 ∈ C0
L∞ and

v(0) = v0 ∈ C0
L∞

C.1.2 Global existence and boundedness

In this section we present the main result of [37] to give sufficient conditions for the system
to be global and bounded.
The main Thereom if this section we shall state now:

Theorem C.1.2. Suppose in addition to (H1-H4) the following hypotheses hold:

• N2 in Proposition 2.1.4 is bounded if T ∗ <∞ (H5)

• There exists an η > 1 and a continuous function h : [0,∞)2 =⇒ [0,∞) such that
|f(t, r, s)| ≤ h(t, S)(1 + r)η∀t, r, s ≥ 0 with s ≤ S (H6)

• There exist am ε > 0 and a continuous function l : [0,∞)2 =⇒ [0,∞) such that
εr + f(t, r, s) + g(t, r, s) ≤ l(t, S)∀t, r, s ≥ 0 with s ≤ S.

Then the solution exists on D × (0,∞) and (2.9), which I will repeat below:

0 ≤ u ≤ N1(t), 0 ≤ v ≤ N2(t) holds in D × [0, T ∗)

This result holds with T ∗ =∞.
Moreover, if N2, h and p are bounded in t,

N2(t) ≤ N̄2, h(t, S) ≤ h̄(S), p(t, S) ≤ p̄(S)∀t ≥ 0

then there exist N̄1 such that N1(t) ≤ N̄1,∀t ∈ [0,∞) and so the solution is uniformly
bounded in D × [0,∞)
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C.2 Stochastic

From the work of [39] we state the main results

• f(r,v,x,t) and σ(r, x, t) are predictible random fields. We then say there exists a
constant K1 > 0 such that

||f(u, v, ·, t)||2 + ||σ(u, ·, t)||2 ≤ K1(1 + ||u||2)

for any u ∈ L2, t ∈ [0, T ] (C1).

• There exist a constant K2 > 0 such that

||f(u, v, ·, t)− f(u1, v, ·, t)||2 + ||σ(u, ·, t)− σ(u1, ·, t)||2 ≤ K2||u− u1||2

for any u, u1 ∈ L2, t ∈ [0, T ] (C2)

• We say that W (x, t) is a Q-Weiner field of finite trace and the covariance function
r(x, y) is bounded by r0, for x, y ∈ D (C3)

Then one large theorem is

Theorem C.2.1. Let the conditions (C1-C3) be satisfied and let h be a F0−measurable
random field such that E[||h||2p] <∞ for p ≥ 1. Then the reaction diffusion equation 2.39
has a unique mild solution u(·, t) which is a continous adapted processes in L2 such that
u ∈ L2p(Ω;C([0, T ];L2)) satisfying

E[ sup
0≤t≤T

||u(·, t)||2p] ≤ C[1 + E[||h||2p]] (C.1)

We have the constant C > 0 depending on p, r0, T . Also, we see that the energy inequality
holds

E[||u(·, t)||2] ≤ E[||h||2 + 2

∫ t

0

(us, Fs(u))ds+

∫ t

0

Tr(Qs(u))ds] (C.2)

Where Tr(Qs(u)) = ||
∑

s(u)||2R, this holds for t ∈ [0, T ]

Proof. For the proof see [39] pg 69

In Therorem 2.2.3 the global conditions on Lipschitz-continuity and C1, C2 on linear
growth can be relaxed to hold locally. However if we don’t add an additioncal contraint
they may lead to a explosive solution in finite time. The additional constraint is

• f(r, x, t), σ(r, x, t) are predictable random fields. Then there exists a constant Cn > 0
such that

||f(u, v, ·, t)||2 + ||σ(u, ·, t)||2 ≤ Cn

for any u ∈ L2, n > 0 with ||u|| ≤ n, t ∈ [0, T ] (Cn.1)
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• There exists a constant Kn > 0 such that

||f(u, v, ·, t)− f(u1, v1, ·, t)||2 + ||σ(u, ·, t)− σ(u1, ·, t)||2 ≤ Kn||u− u1||2

for any t ∈ [0, T ], u, u1 ∈ L2 with ||u|| × ||v|| ≤ n (Cn.2)

• There exist constant C1 > 0 such that

(u, f(u, v, ·, t)) + 1/2Tr(Qt(u) ≤ C1(1 + ||u||2)

for any u ∈ L2, t ∈ [0, T ] (A.4)

If the problem has the conditions Cn.1, Cn.2, C3, C4 holds the the solutions exists in any
finite time interval. The proof is based on a truncation technique by making use of a
Mollifier ζn on [0,∞) to be defined now.

Definition C.3 (Mollifier). For n > 0, ζn : [0,∞) =⇒ [0, 1] is a C∞-function such that

ζn(r) =

{
1 0 ≤ r ≤ n
0 r > 2n

(C.3)

Theorem C.3.1 (Local & Global existence). Let the conditions Cn.1, Cn.2, C3 be satisfied
and let h be a F0-measurable random field such that E[||h||2] < ∞. Then the reaction
diffusion equation (2.39) has a unique local solution u(·, t) which is an adapted, continuous
process in L2. Also if condition C4 holds then the solution exists for t ∈ [0, T ] with any
T > 0 and u ∈ L2(D;C([0, T ];H)) satisfies

E[ sup
0≤t≤T

||u(·, t)||2] ≤ C[1 + E[||h||2]] (C.4)

For some constant C > 0 depending on T.

Proof. See Chow[2007], p.g 72-74

The proof is mainly concerned with first truncating the system 2.39 such that fn(u, v, x, t) =
f(Jnu, v, x, t) and the same for σ where Jnu = ζn(||u||)u then the conditions Cn.1, Cn.2
imply that fn, σn satisfy the global conditions C1, C2. Then to proof conditon C3 we use
inequalities which are derived from the first stage of the proof. Then to prove C4 we use
the energy inequality to show the existence of the global solution. From this we are able
to show

u(·, t) = lim
n =⇒∞

un(·, t)

Hence a global solution is claimed for u. The same can also be repeated for v.
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eines Differentialsystems. Ber Verh Sachs Akad Wiss Leipzig Math-Nat 94:3–22

[35] MARSDEN, J., McCRACKEN, M., CHERNOFF, P., CHILDS, G. and CHOW, S.,
1976. The Hops bifurcation and its applications. New York: Springer.

[36] Hollis, S., Martin, Jr., R. and Pierre, M., 1987. Global Existence and Boundedness in
Reaction-Diffusion Systems. SIAM Journal on Mathematical Analysis, 18(3), pp.744-
761.

[37] Henry, D., 1981. Geometric theory of semilinear parabolic equations. Berlin: Springer-
Verlag.

[38] Chow, P., 2015. Stochastic Partial Differential Equations, Second Edition. Hoboken:
CRC Press.

79


